WROUGHT MATERIALS # COPPER-NICKEL-ZINC ALLOYS Nickel Silvers # Cu Nilo Zn27 Common names: 10% Nickel Silver Nickel Silver 65-10 A copper-nickel-zinc alloy with an alpha phase structure. The material, which is slightly yellow in colour, has good corrosion resistance to rural and marine atmospheres and to fresh water. The alloy has good cold-working properties. The most commonly used wrought forms are sheet and strip. #### **COMPOSITION** (weight %) | Cu | | | 61.0-65.0 | |----|--|--|-----------| | Ni | | | 9.0-11.0 | | Mn | | | 0- 0,5 | | Zn | | | rem. | #### 1 SOME TYPICAL USES Decorative Holloware, flatware (spoons and forks), pressed, spun and shallow deep-drawn articles usually silver plated; watch cases; jewellery; "objets d'art". Electrical Resistance wire and strip for moderately elevated temperatures; contacts; connectors, connector pins and terminals. Mechanical Rivets and clips. Miscellaneous Instrument and camera parts; slide fasteners; etching stock, nameplates and dials. #### **2 PHYSICAL PROPERTIES** | | | | | | | | | | | anna an an | | | | | | |------|--|---------------------------------------|--------------|--------|-----------|-----------------|----|---|---|---|--|--|--|--|--| | | | | | | | | | | | Metric Units | English Units | | | | | | 2.1 | Density at 20 °C | 68 °F | | | | | | | | 8.60 g/cm³ | 0.310 lb/in ³ | | | | | | 2.2 | Melting range . | | | | | | | • | | 980–1 035 °C | 1 795–1 895 °F | | | | | | 2.3 | Coefficient of therm
20 to 100 °C
20 to 300 °C | al expansio
68 to 212
68 to 572 | ° F ` | | at: | | | • | 1 | 0.000 015 per °C
0.000 016 ,, ,, | 0.000 008 per °F
0.000 009 ,, ,, | | | | | | 2.4 | Specific heat (therm 20 °C | al capacity
68°F |) at: | | | | | | | 0.10 cal/g °C | 0.10 Btu/lb °F | | | | | | 2.5 | Thermal conductivit
20 °C
200 °C | y at:
68 °F
392 °F | | : | : | | : | | | 0.09 cal cm/cm² s °C
0.11 ,, | 22 Btu ft/ft² h °F
27 ,, | | | | | | 2.6 | Electrical conductivi
20 °C | ty (volume)
68 °F (anı | | d or | cold : | worke | d) | | • | 4.9 m/ohm mm² | 8.5% IACS | | | | | | 2.7 | Electrical resistivity
20 °C | (volume) at
68 °F (ant | | d or | cold 1 | worke | d) | | • | 0.20 ohm mm²/m
20 microhm cm | 122 ohms (circ mil/ft)
8.0 microhm in | | | | | | 2.8 | Temperature coeffic
20 °C
applicable over rang | <i>68 °F</i> (anı | reale | d or (| cold 1 | ce at:
worke | d) | • | • | 0.000 4 per °C (8.5% IACS) | 0.000 2 per °F (8.5% IACS) | | | | | | 2.9 | Modulus of elasticit annealed | | | | <i>68</i> | °F: | | | • | 12 000 kg/mm² | 17 100 000 lb/in² | | | | | | 2.10 | Modulus of rigidity (
annealed | | | | .68 | °F: | | | | 4 400 kg/mm² | 6 300 000 lb/in² | | | | | N.B.: The values shown in Section 2, which have been appropriately rounded in view of the composition range involved, are based on selected literature references. The melting range covers the highest liquidus and lowest solidus temperatures over the composition range quoted. INDEX NUMBERS RELATE TO LITERATURE REFERENCES (see page 6); INDEX LETTERS RELATE TO FOOTNOTES AT END OF TABLE Prepared by CONSEIL INTERNATIONAL POUR LE DEVELOPPEMENT DU CUIVRE (CIDEC) 100, rue du Rhône - 1204 GENEVE Distributed by COPPER DEVELOPMENT ASSOCIATION Orchard House, Mutton Lane, POTTERS BAR, Herts EN6 3AP DATA SHEET No. L 1 © Cu Ni10 Zn27 1973 Edition # 3 FABRICATION PROPERTIES The information given in this table is for general guidance only, since many factors influence fabrication techniques. The values shown are approximate only, since those used in practice are dependent upon form and size of metal, equipment available, techniques adopted and properties required in the material. | _ | | | | | | | Metric Units Englis | sh Units | | | | |-----|---|-----|--------|----|--|---|---------------------------------|----------|--|--|--| | 3.1 | Casting temperature range . | | | | | • | 1 125–1 200 °C 2 055– | 2 190 °F | | | | | 3.2 | Annealing temperature range . | | | | | | | 1 380 °F | | | | | | Stress relieving temperature range | | | | | | 250- 350 °C 480- | 660 °F | | | | | 3.3 | Hot working temperature range . | | | | | | 850- 925 °C 1 560- | 1 695 °F | | | | | 3,4 | Hot formability | | | | | | Very limited | | | | | | 3.5 | Cold formability | | | | | | Good | | | | | | 3.6 | Cold reduction between anneals | | | | | | 70% max. | | | | | | 3.7 | Machinability: | | | | | | See General Data Sheet No. 2 | | | | | | | Machinability rating (free cutting bras | s = | = 100) | ٠. | | | 25 | | | | | | 8.8 | Joining methods: | • | | | | | See General Data Sheet No. 3.10 |) | | | | | | Soldering | • | | | | | Excellent | | | | | | | Brazing | | | | | | Excellent | | | | | | | Oxy-acetylene welding . | • | | | | | Good | | | | | | | Carbon-arc welding | • | | | | | Not recommended | | | | | | | Gas-shielded arc welding | | | | | | Fair | | | | | | | Coated metal-arc welding | | | ٠ | | | Not recommended | | | | | | | Resistance welding: spot and sea | m | | | | | Good | | | | | | | butt . , | | | | | | Good | | | | | # 4 NATIONAL SPECIFICATIONS FOR MANUFACTURED FORMS and ISO Recommendation | Country | Designation
of
Standards | Designation
of Material
in Standards | Specification
for Chemical
Composition ^(a) | Plate
Sheet
Strip | Rod | Wire | Tube | Sections Shapes | Forgings | |--|--------------------------------|--|---|-------------------------|----------|-------|---------|--|--------------| | Australia | SAA | NS103 | | H 77 | <u> </u> | _ | | | <u></u> | | Belgium | NBN | _ | | | | _ | _ | _ | _ | | Canada | CSA | HC. ZN2140
745 | _ | HC. 4.4 | | _ | | | | | Chile , . | NCh
(INDITECNOR) | | NCh 251 of. 68 | _ | _ | | | _ | _ | | France | NF | U-Z28 N9 | - | A53-605 | _ | | _ | _ | | | Germany | DIN | _ | | *** | | _ | | _ | _ | | ndia | IS | NS 10 | _ | 2283 | | | _ | ************************************** | ****** | | Italy | UNI | — | | | _ | _ | ******* | _ | | | Japan | JIS | NSP 4
NSR 4
NSW 4 | | H3701 | | H3721 | _ | | | | Netherlands . | N or NEN (b) | Cu-Ni10 Zn27 | NEN 6030 | NEN 6033 | _ | _ | | _ | | | South Africa . | SABS | _ | | | | | _ | <u>-</u> | - | | Spain | UNE | Cu Zn Ni10 | 37 103 | 37 103 | _ | _ | _ | _ | | | Sweden | SIS | | | | | _ | **** | _ | | | Switzerland | VSM | | _ | | _ | _ | _ | av | | | United
Kingdom | BS | NS103 | _ | 2870 | _ | 2873 | | _ | Prince | | United States (c) | ASTM | No. 745 | | B122
B151 | B151 | B206 | | | | | International
Organisation for
Standardization | ISO | Cu Ni10 Zn27 | R430 | _ | | | | | | ⁽a) Applicable when the chemical composition is not given in the specifications for wrought forms. ## 5 MECHANICAL PROPERTIES | 1 | Mechanical properties at room temperatu | ire | | | | |---|---|--------|------|-----------|--| | | Tensile properties | see ta | bles | 5.1.1/2/3 | | | | Hardness | 13 | 11 | 5.1.1/2/3 | | | | Shear strength | 17 | ** | 5.1.1/2/3 | | | | Modulus of elasticity (tension) | | see | 2.9 | | | | Modulus of rigidity (torsion) | | 11 | 2.10 | | | 5.2 | Mechanical properties at low temperature Tensile properties | no data | |-----|---|-----------------| | | Impact properties | н н | | 5.3 | Mechanical properties at elevated temperate | ure | | | Short-time tensile properties | no data | | | Impact properties | 12 19 | | | Creep properties | 11 11 | | 5.4 | Fatigue properties | | | | Fatigue strength at room temperature | see table 5.4.1 | ⁽b) Older specifications bear prefix N; for new specifications the NEN prefix is used. ⁽c) In the United States, bar and flat wire are covered under the Plate-Sheet-Strip column. # 5.1 MECHANICAL PROPERTIES AT ROOM TEMPERATURE* # 5.1.1 Typical Tensile Properties and Hardness Values-Metric Units This table is representative of practice in many European countries. For British and American practices, see tables 5.1.2 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | | Temper | Tensile | Proof | Elongation | Hare | dness | Shear | | | |-------|--|--------------------|---------------------------------|---------------|-------------------|-------------------|----------------|--|--| | Form | | Strength
kg/mm² | Stress
0.2% offset
kg/mm² | %
on 50 mm | Brinell | Vickers | Strongth | Typical Size Related
to Properties Shown (a) | | | Sheet | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 39
43 | 15
20 | 52
48 | 80
90 | 85
95 | 29
32 | 0.2–2 mm thick
0.2–2 mm thick | | | Strip | Typical
Cold Worked
Tempers | 46
52
60 | 32
45
56 | 25
12
6 | 120
145
170 | 125
150
180 | 32
34
36 | 0.5–2 mm thick
0.2–2 mm thick
0.2–1 mm thick | | ⁽a) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. # 5.1.2 Typical Tensile Properties and Hardness Values-SI and English Units This table is based on British practice. For other European and American practices, see tables 5.1.1 and 5.1.3, respectively. The values shown represent
reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | Form | Temper (a) | 1 - | Tensile
Strength | | Proof Stress
0.1% offset | | Elongation | Vickers | Shear
Strength | | Typical Size Related | | |---------|--|----------------|---------------------|----------------|-----------------------------|----------------|---|-------------------|-------------------|----------------|---|--| | FORM | I emper w | hbar | ton/in² | hbar | ton/in² | % | gauge
length | Hardness | hbar | ton/in² | to Properties Shown (b) | | | Sheet | Annealed
(grain size 0.040 mm)
(grain size 0.025 mm) | 37
40 | 24
26 | 14
19 | 9
12 | 50
47 | 50 mm (2 in.)
50 mm (2 in.) | 80
90 | 28
29 | | 0.2-3 mm (0.008-0.12 in.) thick
0.2-3 mm (0.008-0.12 in.) thick | | | Strip | Cold Worked
Half Hard
Hard
Extra Hard | 46
54
65 | 30
35
42 | 31
43
56 | 20
28
36 | 22
10
~3 | 50 mm (2 in.)
50 mm (2 in.)
50 mm (2 in.) | 140
170
190 | 29
32
32 | 19
21
21 | 0.2-3 mm (0.008-0.12 in.) thick
0.2-3 mm (0.008-0.12 in.) thick
0.2-3 mm (0.008-0.12 in.) thick | | | | Annealed | 36 | 23 | 12 | 8 | 50 | 5.65√S _o | 80 | 26 | 17 | | | | Rod (c) | Typical
Cold Worked Temper | 49 | 32 | 36 | 23 | 15 | 5.65√S _° | 150 | 32 | 21 | 4–12 mm (0.16–0.5 in.) diam.
or equivalent area | | | | Annealed | 37 | 24 | | _ | 45 | 100 mm (4 in.) | | 28 | 18 | 0.5-2.5 mm (0.02-0.10 in.) diam | | | Wire | Cold Drawn
Half Hard
Hard | 57
73 | 37
47 | | | ~5
— | 100 mm (4 in.)
— | | | | 0.5-2.5 mm (0.02-0.10 in.) diam.
0.5-2.5 mm (0.02-0.10 in.) diam. | | ⁽a) The recognised temper designations used in the relevant British Standards are also given. ⁽b) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the meta manufacturers. ⁽c) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. ^{*} It will be noted that tables 5.1.1, 5.1.2 and 5.1.3, giving typical tensile properties and hardness values in Metric, St and English, and American units respectively are not directly comparable. This is because the properties quoted reflect to some extent the metalworking techniques, specification practices and testing procedures in the countries concerned, and in view of the different sizes of products referred to in these tables. Individual manufacturers of semi-fabricated products can, however, normally meet the requirements of any national standard. # 5.1.3 Typical Tensile Properties and Hardness Values—American Units This table is based on American practice and the temper designations shown are those referred to in ASTM and other American Standards. For British and other European countries' practices, see tables 5.1.2 and 5.1.1, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | Form | Temper | Tensile
Strength | Yield
Strength
0.5%
extension | Elc | ongation | | Rockw
lardne | | Shear
Strength
psi | Typical
Size
Related
to | | |-----------------------------|--|---|--|----------------------------|--|----------------------------|----------------------------|----------------------------|--|--|--| | | | psi | under load
psi | % | gauge
length | F | F B 30 T | | psi | Properties
Shown ^(a) | | | Flat
Products
(Sheet, | Annealed (grain size 0.070 mm) (grain size 0.050 mm) (grain size 0.035 mm) (grain size 0.025 mm) (grain size 0.015 mm) | 49 000
51 000
53 000
56 000
60 000 | 18 000
19 000
20 000
23 000
28 000 | 49
46
43
40
36 | 2 in.
2 in.
2 in.
2 in.
2 in. | 67
71
76
80
85 | 22
28
35
42
52 | 30
34
38
44
51 | 37 000
38 000
40 000
42 000
45 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | Strip, Bar
Flat Wire) | Cold Worked
Eighth Hard
Quarter Hard
Half Hard
Hard
Extra Hard | 60 000
65 000
73 000
86 000
95 000 | 35 000
45 000
60 000
75 000
76 000 | 34
25
12
4
3 | 2 in.
2 in.
2 in.
2 in.
2 in. | | 60
70
80
89
92 | 55
63
70
76
78 | 42 000
43 000
44 000
51 000
53 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | | Annealed (grain size 0.070 mm) (grain size 0.050 mm) (grain size 0.035 mm) (grain size 0.025 mm) (grain size 0.015 mm) | 50 000
52 000
56 000
58 000
63 000 | | 50
48
45
40
35 | 10 in.
10 in.
10 in.
10 in.
10 in. | | | | 38 000
39 000
42 000
43 000
47 000 | 0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam. | | | Wire | Cold Worked Eighth Hard (10%) Quarter Hard (20%) Half Hard (37%) Hard (60%) Extra Hard (75%) Spring (84%) | 65 000
72 000
85 000
105 000
120 000
130 000 | | 25
10
7
5
3 | 10 in.
10 in.
10 in.
10 in.
10 in.
10 in. | | | | 45 000
50 000
55 000
63 000
66 000
71 000 | 0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam. | | ⁽a) It is possible to obtain sizes different from those given in this column, but information on their mechanical properties should be obtained from metal manufacturers. ## 5.2 MECHANICAL PROPERTIES AT LOW TEMPERATURE # 5.2.1 Tensile Properties-Impact Properties At the date of publication of this sheet, no data relating to this material have been traced. # 5.3 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE # 5.3.1. Short-Time Tensile Properties At the date of publication of this sheet, no data relating to this material have been traced. #### **5.4 FATIGUE PROPERTIES** ## 5.4.1 Fatigue Strength at Room Temperature | Form | T | Number
of | | c Units
mm² | | sh Units
n/in² | American Units
psi | | | |--|-------------------|-----------------------------|---------------------|-----------------------|---------------------|---------------------|-----------------------|-----------------------|--| | rom | Temper | Cycles
× 10 ⁶ | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | | | Strip ^{(f) (1)}
0.56 mm
0.022 in. | Cold Worked 30.9% | 100 | 62 | 19.5 ^(a) | 39.5 | 12.5 ^(a) | 88 000 | 28 000 ^(a) | | | Strip (0 (1)
0.64 mm
0.625 in. | Cold Worked 17.2% | 100 | 53.5 | 17 ^(a) | 34 | 10.5 ^(a) | 76 000 | 24 000 ^(a) | | | Strip ^{(f) (1)}
0.71 mm
0.028 in. | Cold Worked 10.9% | 100 | 48.5 | 19 ^(a) | 31 | 12 ^(a) | 69 000 | 27 000 ^(a) | | | Strip ^{(f) (1)}
0.81 mm
0.032 in. | Annealed | 100 | 43 | 14 ^(a) | 27 | g (a) | 61 000 | 20 000 ^(a) | | | (b) (c) (2) | Cold Drawn | 100 (d) | 41.5 | 12 ^(e) | 26 | 7.5 ^(e) | 58 700 | 17 000 ^(e) | | N.B.: Original values are printed in bold type; other values are converted. #### REFERENCES MECHANICAL PROPERTIES (SECTION 5) (1) Gohn, G.R., Guerard, J.P. and Herbert, G.J. The Mechanical Properties of Some Nickel Silver Alloy Strips. Proc. ASTM Vol. 54, (1954). pp. 229-256. (2) McAdam, D.J., Jr. Fatigue and Corrosion-Fatigue of Spring Material. Trans. ASME., No. 51, (1929), pp. 45-58. ⁽a) Reversed-bending test. (b) Alloy composition: Cu 60.08%; Ni 10.89%; Zn 29.05%; Fe 0.20%. (c) Form not stated in original document, but probably rod. (d) Estimated. ⁽b) Alloy composition: Cu 60.7%; Ni 9.5%; Mn 0.07% Fe 0.10%; Pb 0.02%; Zn rem. # WROUGHT MATERIALS # COPPER-NICKEL-ZINC ALLOYS Nickel Silvers # Cu Nil2 Zn24 Common names: 12% Nickel Silver Nickel Silver 65-12 A copper-nickel-zinc alloy with an alpha phase structure. The alloy has good corrosion resistance to rural, industrial and marine atmospheres and to fresh water. Since it has good cold formability and an attractive soft ivory-white colour, the material is often used for decorative applications. The most commonly used wrought forms are sheet, strip, rod, tube and wire. #### **COMPOSITION** (weight %) | Cu | | | 62.0-66.0 | |----|--|--|-----------| | Ni | | | 11.0-13.0 | | Mn | | | 0- 0.5 | | Zn | | | rem. | #### 1 SOME TYPICAL USES #### Decorative Holloware, flatware (spoons and forks), pressed, spun and deep-drawn articles usually silver plated; watch cases; jewellery; "objets d'art". #### Electrical Relay and contact springs, wiper blades, cross-bar switches, control parts and uniselector components, in telecommunications equipment (for less arduous service conditions); resistance wire and strip for moderately elevated temperatures; contacts, connectors, connector pins and terminals. ####
Mechanical Springs and clips; rivets; Bourdon tubing. #### Miscellaneous Instrument and camera parts; slide fasteners; etching stock, nameplates and dials; musical instruments; fishing tackle. #### **2 PHYSICAL PROPERTIES** | | | | | | | | | | | Metric Units | English Units | |-----|---|----------------------------------|--------|--------|-------|-------|----|---|---|---|--| | 2.1 | Density at 20 °C | 68 °F | | | | | • | 4 | | 8.65 g/cm ³ | 0.315 lb/in³ | | 2.2 | Melting range . | | | | | | | | . | 1 000-1 060 °C | 1 830–1 940 °F | | 2.3 | Coefficient of therma
20 to 100 °C
20 to 300 °C | | °F | ear) a | at: | | | | | 0.000 015 per °C
0.000 016 ,, ,, | 0.000 008 per °F
0.000 009 ,, ,, | | .4 | Specific heat (therm 20 °C | |) at: | | | | | • | . | 0.10 cal/g °C | 0.10 Btu/lb °F | | 2.5 | Thermal conductivity
20 °C
200 °C | y at:
68 °F
392 °F | 1 | • | | | | | . | 0.08 cal cm/cm ² s °C
0.09 ,, | 19 Btu ft/ft² h °F
22 ,, | | .6 | Electrical conductivity | ty (volume)
<i>68 °F</i> (ani | | or c | old v | vorke | d) | | | 4.6 m/ohm mm² | 8% IACS | | .7 | Electrical resistivity (| (volume) a
68 °F (ani | | or c | old v | vorke | d) | | | 0.22 ohm mm²/m
22 microhm cm | 130 ohms (circ mil/ft)
8.5 microhm in | | .8 | Temperature coeffici
20 °C
applicable over rang | 68 °F (ani | nealed | or c | old v | | | | | 0.000 4 per °C (8% IACS) | 0.000 2 per °F (8% IACS) | | .9 | *************************************** | (tension)
 | • | | | | | , | : | 12 300 kg/mm²
13 100 kg/mm² | 17 500 000 lb/in²
18 600 000 lb/in² | | .10 | Modulus of rigidity (
annealed
cold worked . | torsion) at | | | | | : | : | | 4 600 kg/mm²
4 900 kg/mm² | 6 500 000 lb/in²
6 900 000 lb/in² | N.B.: The values shown in Section 2, which have been appropriately rounded in view of the composition range involved, are based on selected literature references. The melting range covers the highest liquidus and lowest solidus temperatures over the composition range quoted. INDEX NUMBERS RELATE TO LITERATURE REFERENCES (see page 7); INDEX LETTERS RELATE TO FOOTNOTES AT END OF TABLE Prepared by CONSEIL INTERNATIONAL POUR LE DEVELOPPEMENT DU CUIVRE (CIDEC) 100, rue du Rhône - 1204 GENEVE Distributed by COPPER DEVELOPMENT ASSOCIATION Orchard House, Mutton Lane, POTTERS BAR, Herts EN6 3AP © Cu Ni12 Zn24 1973 Edition # **3 FABRICATION PROPERTIES** The information given in this table is for general guidance only, since many factors influence fabrication techniques. The values shown are approximate only, since those used in practice are dependent upon form and size of metal, equipment available, techniques adopted and properties required in the material. | | | | | | | | | Metric Units | English Units | |-----|--------------------------------------|------|-------|-----|---|---|---|----------------|--------------------| | 3.1 | Casting temperature range . | | • | | • | • | | 1 150-1 225 °C | 2 100-2 235 °F | | 3.2 | Annealing temperature range . | | | | | | . | 600- 750 °C | 1 110–1 380 °F | | | Stress relieving temperature range | | | | | | , | 250- 350 °C | 480- 660 °F | | 3.3 | Hot working temperature range | , | | | | | | 850- 925 °C | 1 560– 1 695 °F | | 3.4 | Hot formability | | | | | | | Very | limited | | 3.5 | Cold formability | | | | | | | Exc | ellent | | 3.6 | Cold reduction between anneals | | | | , | | . | 85% | max. | | 3.7 | Machinability: | | | | | | . | See General D | Data Sheet No. 2 | | | Machinability rating (free cutting b | rass | == 10 | 00) | | | | ! | 25 | | 3.8 | Joining methods: | | | | | | | See General D | ata Sheet No. 3.10 | | | Soldering | | | | | | | Exc | ellent | | | Brazing | | | | | • | | Exc | ellent | | | Oxy-acetylene welding . | | | | | | | G | ood | | | Carbon-arc welding . | | | | | | | Not reco | ommended | | | Gas-shielded arc welding . | | | | | | | F | Fair | | | Coated metal-arc welding . | | | | | | | Not reco | ommended | | | Resistance welding: spot and | sean | n . | | | | | G | ood | | | butt . | | | | | | • | G | ood | ## 4 NATIONAL SPECIFICATIONS FOR MANUFACTURED FORMS and ISO Recommendation | Country | Designation
of
Standards | Designation
of Material
in Standards | Specification
for Chemical
Composition (a) | Plate
Sheet
Strip | Rod | Wire | Tube | Sections Shapes | Forgings | |--|--------------------------------|--|--|-------------------------|----------|------------------|-------------|-----------------|-------------| | Australia | SAA | NS104 | _ | H77
H83 | | | ***** | - | | | Belgium | NBN | Cu63 Ni12 Zn | | 266.41 | 266.41 | 266.41 | _ | | Make . | | Canada | CSA | HC. ZN2312
757 | | ******* | HC,5.4 | HC.5.22 | <u> </u> | _ | | | Chile | NCh
(INDITECNOR) | | NCh 251 of. 68 | | | | _ | | | | France | NF | | | - | _ | _ | _ | _ | _ | | Germany | DIN | Cu Ni12 Zn24 | 17 663 | 17 670 | 17 672 | 17 677
17 682 | 17 671 | | _ | | India | ıs | Cu Ni12 Zn25
NS 12 | | 3332
2283 | | | | | ***** | | Italy | UNI | | • | | _ | _ | _ | _ | _ | | Japan | JIS | NSP 3 NSB 3
NSR 3 NSW 3 | | H3701 | H3711 | H3721 | | | <u></u> | | Netherlands . | N or NEN (b) | Cu-Ni12 Zn24 | NEN 6030 | NEN 6033 | | | | | | | South Africa . | SABS | | | | | _ | _ | | _ | | Spain , . | UNE | Cu Zn Ni12 | _ | 37 103 | | <u></u> | | | **** | | Sweden | SIS | 52 43
Cu Ni12 Zn24 | | 14 52 43 | 14 52 43 | 14 52 43 | | | _ | | Switzerland | VSM | Cu Ni12 Zn24 | 10 804 | 10 804 | 10 804 | 10 804 | 10 804 | | | | United
Kingdom | BS | N S104 | _ | 1824
2870 | | 2873 | | · | | | United States (c) | ASTM | No. 757 | | B151 | B151 | B206 | | | _ | | International
Organisation for
Standardization | ISO | Cu Ni12 Zn24 | R430 | | | _ | | | | ⁽a) Applicable when the chemical composition is not given in the specifications for wrought forms. ## **5 MECHANICAL PROPERTIES** | 5.1 | Mechanical properties at room temperatur | e | | |-----|--|---|--| | | ter and the second second | | | Tensile properties see tables 5.1.1/2/3 Hardness ,, 5.1.1/2/3 Shear strength Modulus of elasticity (tension) see 2.9 Modulus of rigidity (torsion) ,, 5.1.1/2/3 ,, 2.10 5.2 Mechanical properties at low temperature Tensile properties Impact properties no data 5.3 Mechanical properties at elevated temperature Short-time tensile properties see table 5,3.1 Impact properties no data Creep properties 11 11 5.4 Fatigue properties Fatigue strength at room temperature see table 5.4.1 $^{^{(}b)}$ Older specifications bear prefix N; for new specifications the NEN prefix is used. ⁽c) In the United States, bar and flat wire are covered under the Plate-Sheet-Strip column. # 5.1 MECHANICAL PROPERTIES AT ROOM TEMPERATURE (a) # 5.1.1 Typical Tensile Properties and Hardness Values-Metric Units This table is representative of practice in many European countries. For British and American practices, see tables 5.1.2 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | | | Tensile | Proof | Elo | ngation | Hard | ness | Shear | Typical Size Related | |--------------------|--|----------------------|---------------------------------|---------------------|----------------------------------|--------------------------|--------------------------|----------------------|--| | Form | Temper | Strength
kg/mm² | Stress
0.2% offset
kg/mm² | % | gauge
length | Brinell | Vickers | Strength
kg/mm² | to Properties Shown (b) | | | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 39
44 | 16
21 | 48
45 | 50 mm
50 mm | 80
90 | 85
95 | 29
33 | 0.2–2 mm thick
0.2–2 mm thick | | Sheet
Strip | Typical
Cold Worked
Tempers | 45
50
60
70 | 32
42
54
67 | 32
22
10
5 | 50 mm
50 mm
50 mm
50 mm | 120
145
165
190 | 125
150
175
200 | 32
35
36
38 | 0.5–2 mm thick
0.2–2 mm thick
0.1–1 mm thick
0.1–1 mm thick | | | Annealed | 38 | 15 | 50 | 5.65√S _° | 85 | 90 | 28 | 5–25 mm diam.
or equivalent area | | Rod ^(c) | Typical
Cold Worked
Temper | 50 | 43 | 16 | 5.65√S _o | 140 | 145 | 35 | 5–15 mm diam.
or equivalent area | | | Annealed | 38 | <u>—</u> | 50 | 100 mm | | _ | 28 | 0.5–3 mm diam. | | Wire | Typical
Cold Drawn
Temper | 85 | _ | 1 | 100 mm | Barbara and | _ | 42 | 0.2–1 mm diam. | | | Annealed | 39 | 15 | 50 | 5.65√S _° | 80 | 85 | 29 | 10-30 mm O.D.,
1-3 mm wall | | Tube | Typical
Cold Drawn
Temper | 48 | 38 | 18 | 5.65√S _o | 140 | 145 | 33 | 10–30 mm O.D.,
1–3 mm wall | It will be noted that tables 5.1.1, 5.1.2 and 5.1.3, giving typical tensile properties and hardness values in Metric, SI and English, and American units respectively are not directly comparable. This is because the properties quoted reflect to some extent the metalworking techniques, specification practices and testing procedures in the countries concerned, and in view of the different sizes of products referred to in these tables. Individual manufacturers of semi-fabricated products can, however, normally meet the requirements of any national standard. (a) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal The mechanical properties will be largely dependent upon the size and cross-sectional area or
complexity of the product. # 5.1.2 Typical Tensile Properties and Hardness Values—SI and English Units This table is based on British practice. For other European and American practices, see tables 5.1.1 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | | | | nsile
ength | | f Stress
offset | E | ilongation | Vickers | Shear
Strength | | Typical Size Related | | |----------------|---|----------|----------------|---------|--------------------|---------|---------------------|------------|-------------------|---------|--|--| | Form | Temper ^(a) | hbar | ton/in² | hbar | ton/in² | % | gauge
length | Hardness | hbar | ton/in² | Properties Shown ^(b) | | | | Annealed
(grain size 0.040 mm)
Grade 5 (soft) (c) | 39 | 25
— | 14 | 9 | 45 | 50 mm (2 in.)
— | 85
100 | 29 | 19
— | 0.2–3 mm (0.008–0.12 in.) thick
0.2–1 mm (0.008–0.04 in.) thick | | | Sheet
Strip | Cold Worked
Half Hard
Grade 4 ^(c) | 48
— | 3 1 | 32
— | 21 | 20
— | 50 mm (2 in.)
— | 145
155 | 31
— | 20
— | 0,2–3 mm (0.008–0.12 in.) thick
0.2–1 mm (0.008–0.04 in.) thick | | | | Hard
Grade 3 ^(c) | 56
 | 36
 | 45
— | 29 | 8 | 50 mm (2 in.) | 170
180 | 34 | 22
— | 0.2–3 mm (0.008–0.12 in.) thick
0.2–1 mm (0.008–0.04 in.) thick | | | | Extra Hard
Grade 2 ^(c) | 66
 | 43 | 57
— | 37
— | ~3
— | 50 mm (2 in.) | 195
210 | 37
— | 24 | 0.2-3 mm (0.008-0.12 in.) thick
0.2-1 mm (0.008-0.04 in.) thick | | | | Annealed | 37 | 24 | 12 | 8 | 45 | 5.65√S _o | 85 | 28 | 18 | _ | | | Rod (d) | Typical
Cold Worked Temper | 51 | 33 | 37 | 24 | 13 | 5.65√S _o | 155 | 36 | 23 | 4-12 mm (0.16-0.5 in.) diam.
or equivalent area | | | | Annealed | 39 | 25 | | <u> </u> | 40 | 100 mm (4 in.) | _ | 29 | 19 | 0.5-2.5 mm (0.02-0.10 in.) diam. | | | Wire | Cold Drawn
Half Hard
Hard | 59
74 | 38
48 | = | _ | ~5
— | 100 mm (4 in.)
— | | | | 0.5–2.5 mm (0.02–0.10 in.) diam.
0.5–2.5 mm (0.02–0.10 in.) diam. | | ⁽a) The recognised temper designations used in the relevant British Standards are also given. It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. Strip for the telecommunications industry; the material is similar to but harder than the corresponding annealed, half hard, hard and extra hard tempers defined for general-purpose sheet and strip in the relevant British Stanadard. The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. #### 5.1.3 Typical Tensile Properties and Hardness Values-American Units This table is based on American practice and the temper designations shown are those referred to in ASTM and other American Standards. For British and other European countries' practices, see tables 5.1.2 and 5.1.1, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper | Tensile
Strength | Yield
Strength
0.5% | Ele | ongation | 1 - | lockw
lardne | | Shear
Strength
psi | Typical
Size
Related
to | | |---------------------------------|---|---|--|----------------------------|--|----------------------------|----------------------------|----------------------------|--|--|--| | | | psi | extension
under load
psi | % | gauge
length | F | В | 30 T | μsi | Properties
Shown ^(a) | | | Flat
Products
(Sheet, | Annealed
(grain size 0.070 mm)
(grain size 0.050 mm)
(grain size 0.035 mm)
(grain size 0.025 mm)
(grain size 0.015 mm) | 52 000
54 000
56 000
59 000
61 000 | 18 000
19 000
21 000
24 000
28 000 | 48
45
42
38
35 | 2 in.
2 in.
2 in.
2 in.
2 in. | 69
73
78
82
88 | 22
30
37
45
55 | 27
33
38
44
51 | 39 000
41 000
42 000
44 000
45 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | Strip,
Bar and
Flat Wire) | Cold Worked
Eighth Hard
Quarter Hard
Half Hard
Hard
Extra Hard | 60 000
65 000
73 000
85 000
93 000 | 35 000
45 000
60 000
75 000
79 000 | 32
23
11
4
2 | 2 in.
2 in.
2 in.
2 in.
2 in. | | 60
70
80
89
92 | 55
63
70
75
77 | 42 000
43 000
44 000
51 000
52 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | Rod (b) | Annealed Cold Worked | 55 000
80 000 | 20 000
65 000 | 45
12 | 2 in.
2 in. | | 35
80 | | 42 000
52 000 | 1.0 in. diam. | | | Wire | Annealed
(grain size 0.070 mm)
(grain size 0.050 mm)
(grain size 0.035 mm)
(grain size 0.025 mm)
(grain size 0.015 mm) | 50 000
52 000
56 000
58 000
63 000 | = | 50
48
45
40
35 | 10 in.
10 in.
10 in.
10 in.
10 in. | | | | 38 000
39 000
42 000
43 000
47 000 | 0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam. | | | v vire | Cold Worked
Eighth Hard (10%)
Quarter Hard (20%)
Half Hard (37%)
Hard (60%)
Extra Hard (75%)
Spring (84%) | 65 000
72 000
85 000
105 000
120 000
130 000 |
 -
 -
 - | 25
10
7
5
3 | 10 in.
10 in.
10 in.
10 in.
10 in. | | —
—
— |

 | 45 000
47 000
55 000
63 000
66 000
71 000 | 0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam.
0.080 in. diam. | | ⁽a) It is possible to obtain sizes different from those given in this column, but information on their mechanical properties should be obtained from metal manufacturers. ⁽b) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. # 5.2 MECHANICAL PROPERTIES AT LOW TEMPERATURE # 5.2.1 Tensile Properties-Impact Properties At the date of publication of this sheet, no data relating to this material have been traced. #### 5.3 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE #### 5.3.1 Short-Time Tensile Properties | Form | Tomas | I | ating
erature | Ten | site Stren | gth | Proof Stress
0.2% offset | Elongation | | |-----------|----------------------------|------------------|------------------|----------------|----------------------|----------------------------|-----------------------------|------------|-----------------| | | Temper | °c | °F | kg/mm² | ton/in² | psi | kg/mm² | % | gauge
length | | Strip (1) | Cold worked ^(a) | 20
100
200 | 68
212
392 | 67
67
65 | 42.5
42.5
41.5 | 95 500
95 500
92 500 | 63
65
63 | 2
— | 50 mm | ⁽a) Quoted as "hard, 205 HV" in original document, but amount of cold work not defined. N.B.: Original values are printed in boid type; other values are converted. #### **5.4 FATIGUE PROPERTIES** #### 5.4.1 Fatigue Strength at Room Temperature | Form | Temper | Number
of | | units
mm² | Englis
ton | h Units
/in² | American Units
psi | | | |--|-------------------|-----------------------------|---------------------|---------------------|----------------------|---------------------|-----------------------|-----------------------|--| | | | Cycles
× 10 ⁶ | Tensile
Strength | Fatigue
Strength | Tensite
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | | | Strip (b) (2)
0.74 mm
0.029 in. | Cold Worked 50% | 100 | 72 | 22,5 ^(a) | 45.5 | 14.5 ^(a) | 102 300 | 32 000 ^(a) | | | Strip ^{(b) (2)}
0.81 mm
0.032 in. | Cold Worked 37.2% | 100 | 72 | 19.5 ^(a) | 46 | 12,5 ^(a) | 102 700 | 28 000 ^(a) | | | Strip (b) (2)
0.91 mm
0.036 in. | Cold Worked 20.7% | 100 | 68 | 18,5 ^(a) | 43 | 11.5 ^(a) | 96 700 | 26 000 ^(a) | | | Strip (b) (2)
1.1 mm
0.043 in. | Cold Worked 10.9% | 100 | 60 | 17.5 ^(a) | 38 | 11 ^(a) | 85 100 | 25 000 ^(a) | | ⁽a) Reversed-bending test. #### REFERENCE #### MECHANICAL PROPERTIES (SECTION 5) - (1) Weldon, B.A., Towers, J.A. and Patton, A.M. Nickel Silver as an Engineering Material. Metals & Materials, Vol. 4 (1970), pp. 299-303. - (2) Gohn, G.R., Guerard, J.P. and Herbert, G.J. The Mechanical Properties of Some Nickel Silver Alloy Strips. Proc. ASTM. Vol. 54 (1954), pp. 229-256 ⁽b) Alloy composition: Cu 60.08%; Ni 10.89%; Zn 29.05%; Fe 0.20%. N.B.: Original values are printed in bold type; other values are converted. ⁻ Further data can be obtained from the following paper: Weldon, B.A., Towers, J.A. and Patton, A.M. Nickel Silver as an Engineering Material. Metals & Materials, Vol. 4 (1970), pp. 299-303; also Copper and Its Alloys. Inst. Metals Monograph and Report Series No. 34 (1970), pp. 298-302. (data for 1 mm strip, hardness 195-200 HV, deflected to maximum and returned to zero position). # WROUGHT MATERIALS #
COPPER-NICKEL-ZINC ALLOYS Nickel Silvers # Cu Nil5 Zn2l Common names: 15% Nickel Silver Nickel Silver 65-15 A copper-nickel-zinc alloy with an alpha phase structure. The alloy has good corrosion resistance in many environments, and on account of its pleasing silver-white colour, is selected for many decorative applications. The material has excellent cold formability. The most commonly used wrought forms are sheet, strip, rod and wire. #### **COMPOSITION** (weight %) | Cu | | | 62.0-66.0 | |----|---|--|-----------| | Ni | | | 14.0-16.0 | | Mn | | | 0- 0.5 | | 7n | _ | | rem. | #### 1 SOME TYPICAL USES #### Decorative Holloware, flatware (spoons and forks), pressed, spun and deep-drawn articles usually silver plated; watch cases; medals and medallions; jewellery and fancy buttons; architectural panels and trim; "objets d'art". #### **Electrical** Contacts, connectors, connector pins and terminals; resistance wire and strip for moderately elevated temperatures. #### Mechanical Springs and clips; rivets. #### Miscellaneous Instrument and camera parts; etching stock, nameplates and dials; musical instruments; slide fasteners; deep-drawn products. #### **2 PHYSICAL PROPERTIES** | | | | | | | | | | | Metric Units | English Units | |----|------------------------|------------------|----------|-------|-------|------|------|---|---|--------------------------|--------------------------| | 1 | Density at 20 °C | 68 °F | | | | | 1 | | | 8.70 g/cm³ | 0.315 lb/in³ | | 2 | Melting range | | | | | | , | | | 1 040-1 090 °C | 1 905–1 995 °F | | 3 | Coefficient of thern | nal expansi | on (line | ar) a | t: | | | | | | | | | 20 to 100 °C | 68 to 212 | °F` | | | | | | | 0.000 015 per °C | 0.000 008 per °F | | | 20 to 300 °C | 68 to 572 | °F | | | | | | | 0.000 016 ,, ,, | 0.000 009 ,, ,, | | 4 | Specific heat (therr | nal capacit | y) at: | | | | | | | | | | | 20 °C | | | | | | | | | 0.10 cal/g °C | 0.10 Btu/lb °F | | 5 | Thermal conductivi | ty at: | | | | | | | | | | | | 20 °C | 68 °F | | | | | | | | 0.07 cal cm/cm² s °C | 17 Btu ft/ft² h °F | | : | 200 °C | 392 °F | | | | | | | | 0.08 ,, | 19 ,, | | 6 | | | | | | | | | | | | | | 20 °C | | | or co | old w | orke | d) | | | 4.1 m/ohm mm² | 7% IACS | | 7 | Electrical resistivity | (volume) a | at: | | | | | | | | | | | 20 °C | <i>68 °F</i> (ar | nealed | or co | old w | orke | d) | ٠ | | 0.25 ohm mm²/m | 148 ohms (circ mil/ft) | | | | | | | | | | | | 25 microhm cm | 9.7 microhm in | | 8 | Temperature coeffi | | | | | | | | | | | | | | <i>68 °F</i> (ar | | | | | | | ٠ | 0.000 3 per °C (7% IACS) | 0.000 2 per °F (7% IACS) | | | applicable over ran | | | | | | 2 °F | | | | | | 9 | Modulus of elastici | | | | | | | | | | | | | annealed | | | | | | | ٠ | • | 12 700 kg/mm² | 18 100 000 lb/in² | | | | | | | | | • | • | ٠ | 13 200 kg/mm² | 18 800 000 lb/in² | | 10 | Modulus of rigidity | | | | 68 ° | 'F ! | | | | . === (, , , | 0.700.000.00.00 | | | annealed | | | | | • | | • | • | 4 700 kg/mm² | 6 700 000 fb/in² | | | cold worked . | | | | | | | | • | 4 900 kg/mm² | 7 000 000 lb/in² | N.B.: The values shown in Section 2, which have been appropriately rounded in view of the composition range involved, are based on selected literature references. The melting range covers the highest liquidus and lowest solidus temperatures over the composition range quoted. Prepared by CONSEIL INTERNATIONAL POUR LE DEVELOPPEMENT DU CUIVRE (CIDEC) 100, rue du Rhône - 1204 GENEVE Distributed by COPPER DEVELOPMENT ASSOCIATION Orchard House, Mutton Lane, POTTERS BAR, Herts EN6 3AP DATA SHEET No. L 3 © Cu Ni15 Zn21 1973 Edition ## **3 FABRICATION PROPERTIES** The information given in this table is for general guidance only, since many factors influence fabrication techniques. The values shown are approximate only, since those used in practice are dependent upon form and size of metal, equipment available, techniques adopted and properties required in the material. | - | | | | - | | | Metric Units | English Units | |-----|--|-----|-----|-----|--|---|-----------------|------------------| | 3.1 | Casting temperature range , | | | | | | 1 175-1 250 °C | 2 145–2 280 °F | | 3.2 | Annealing temperature range . | | | | | | 625- 775 °C | 1 155–1 425 °F | | | Stress relieving temperature range | | | | | | 250- 350 °C | 480- 660 °F | | 3.3 | Hot working temperature range . | | | | | | 900- 975 °C | 1 650–1 785 °F | | 3.4 | Hot formability | | | | | | Very li | imited | | 3.5 | Cold formability | | | | | | Exce | llent | | 3.6 | Cold reduction between anneals | | , | , | | | 80% | max. | | 3.7 | Machinability | | | | | | See General Da | ata Sheet No. 2 | | | Machinability rating (free cutting bra | ass | = 1 | 00) | | • | 2! | 5 | | 3.8 | Joining methods: | | | | | | See General Dat | a Sheet No. 3.10 | | | Soldering . , , . | | | | | • | Excel | lent | | | Brazing | | | | | • | Excel | lent | | | Oxy-acetylene welding . | | | | | | Goo | od | | | Carbon-arc welding | | | | | | Not recom | nmended | | | Gas-shielded arc welding . | , | | | | | Fai | ir | | | Coated metal-arc welding . | • | | | | | Not recom | mended | | | Resistance welding: spot and se | eam | | | | | Goo | od | | | butt . | | | | | , | God | od | # 4 NATIONAL SPECIFICATIONS FOR MANUFACTURED FORMS #### and ISO Recommendation | Country | Designation
of
Standards | Designation
of Material
in Standards | Specification
for Chemical
Composition ^(a) | Plate
Sheet
Strip | Rod | Wire | Tube | Sections Shapes | Forgings | |--|--------------------------------|--|---|-------------------------|-------|----------|-------------|-----------------|----------| | Australia | SAA | NS105 | | H77 | _ | | _ | _ | · | | Belgium | NBN | | | _ | | | | | | | Canada | CSA | _ | | | _ | | _ | | | | Chile | NCh
(INDITECNOR) | _ | _ | | | <u></u> | | _ | | | France | NF | U-Z22 N15 | | A53-605 | | | _ | | | | Germany | DIN | | | _ | _ | | _ | _ | | | India | IS | NS15 | | 2283 | | | | _ | | | Italy | UNI | | | _ | | | _ | _ | | | Japan | JIS | NSP 3 NSB 3
NSR 3 NSW 3 | _ | H3701 | H3711 | H3721 | | _ | _ | | Netherlands . | N or NEN (b) | 4 | | | | | _ | | | | South Africa . | SABS | _ | | _ | | | | | | | Spain | UNE | Cu Zn Ni15 | _ | 37 103 | _ | | | | | | Sweden | SIS | | | _ | _ | | _ | | | | Switzerland | VSM | | _ | | | | | | | | United
Kingdom | BS | NS105 | _ | 2870 | _ | 2873 | | | _ | | United States . | ASTM | | | | | | | | | | International
Organisation for
Standardization | ISO | Cu Ni15 Zn21 | R430 | | | Manakana | | | | ⁽a) Applicable when the chemical composition is not given in the specifications for wrought forms. (b) Older specifications bear prefix N; for new specifications the NEN prefix is used. ### **5 MECHANICAL PROPERTIES** | Tensile properties | see t | able | s 5.1.1/2/3 | |---------------------------------|-------|------------|-------------| | Hardness | 11 | 7 1 | 5,1,1/2/3 | | Shear strength | 11 | 11 | 5.1.1/2/3 | | Modulus of elasticity (tension) | | se | e 2.9 | | Modulis of rigidity (torsion) | | * 1 | 2.10 | 5.1 Mechanical properties at room temperature | 5.2 | Mechanical properties at low temperature | | | |-----|---|----|------| | | Tensile properties | no | data | | | Impact properties | 31 | 12 | | 5.3 | Mechanical properties at elevated temperature | | | | | Short-time tensile properties | no | data | | | Impact properties | 1) | н | | | Creep properties | 21 | 3.5 | | 5.4 | Fatigue properties | | | | | Fatigue strength at room temperature | no | data | #### 5.1 MECHANICAL PROPERTIES AT ROOM TEMPERATURE (a) # 5.1.1 Typical Tensile Properties and Hardness Values-Metric Units This table is representative of practice in many European countries. For British and American practices, see tables 5.1.2 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | | Temper | Tensile | Proof | Proof Elongation | | | dness | Shear | Typical Size Related | |---------|--|--------------------|-----------------------|------------------|-------------------------|-------------------|-------------------|--------------------|--| | Form | | Strength
kg/mm² | 0.2% offset
kg/mm² | % | gauge
length | Brinell | Vickers | Strength
kg/mm² | to Properties Shown (b) | | Sheet | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 41
45 | 16
22 | 45
38 | 50 mm
50 mm | 85
100 | 90
105 | 31
34 | 0.2–2 mm thick
0.2–2 mm thick | | Strip | Typical
Cold Worked
Tempers | 47
53
61 | 36
47
57 | 25
15
8 | 50 mm
50 mm
50 mm | 125
150
170 | 130
155
180 | 33
34
36 | 0.5–2 mm thick
0.2–2 mm thick
0.1–1 mm thick | | Rod (c) | Annealed | 40 | 16 | 45 | 5.65√S _° | 85 | 90 | 30 | 5–25 mm diam.
or equivalent area | | Kou ··· | Typical
Cold Worked
Temper | 52 | 43 | 16 | 5,65√S _o | 145 | 150 | 34 | 5–15 mm diam.
or equivalent area | | | Annealed | 41 | | 40 | 100 mm | | | 31 | 0.5–3 mm diam. | | Wire | Typical
Cold Drawn
Temper | 63 | _ | 6 | 100 mm | | | 38 | 0.2–2 mm diam. | ⁽a) It will be noted that tables 5.1.1, 5.1.2 and 5.1.3, giving typical tensile properties and hardness values in Metric, SI and English, and American units respectively are not directly comparable. This is because the properties quoted reflect to some extent the metalworking techniques, specification practices and testing procedures in the countries concerned, and in view of the different
sizes of products referred to in these tables. Individual manufacturers of semi-fabricated products can, however, normally meet the requirements of any national standard. ⁽b) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. ⁽c) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. ## 5.1.2 Typical Tensile Properties and Hardness Values—SI and English Units This table is based on British practice. For other European and American practices, see tables 5.1.1 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper ^(a) | | Tensile
Strength | | Proof Stress
0.1% offset | | Elongation | Vickers | Shear
Strength | | Typical Size Related | | |----------------|--|----------------|---------------------|----------------|-----------------------------|---------------|---|-------------------|-------------------|----------|---|--| | FUIII | | hbar | ton/in² | hbar | ton/in² | % | gauge
length | Hardness | hbar | ton/in² | Properties Shown (b) | | | | Annealed
(grain size 0.040 mm)
(grain size 0.025 mm) | 40
42 | 26
27 | 15
20 | 10
13 | 45
42 | 50 mm (2 in.)
50 mm (2 in.) | 90
100 | 29
31 | 19
20 | 0.2–3 mm (0.008–0.12 in.) thick
0.2–3 mm (0.008–0.12 in.) thick | | | Sheet
Strip | Cold Worked
Half Hard
Hard
Extra Hard | 49
57
68 | 32
37
44 | 37
48
59 | 24
31
38 | 15
6
~2 | 50 mm (2 in.)
50 mm (2 in.)
50 mm (2 in.) | 150
175
200 | 34
37
40 | 24 | 0.2–3 mm (0.008–0.12 in.) thick
0.2–3 mm (0.008–0.12 in.) thick
0.2–3 mm (0.008–0.12 in.) thick | | | | Annealed | 39 | 25 | 14 | 9 | 45 | 5.65√S _o | 90 | 29 | 19 | | | | Rod (c) | Typical
Cold Worked Temper | 53 | 34 | 42 | 27 | 10 | 5.65√ S _° | 160 | 37 | 24 | 4–12 mm (0.16–0.5 in.) diam.
or equivalent area | | | | Annealed | 39 | 25 | | | 40 | 100 mm (4 in.) | _ | 29 | 19 | 0.5–2.5 mm (0.02–0.10 in.) diam. | | | Wire | Cold Drawn
Half Hard
Hard | 62
76 | 40
49 | _ | _ | <5
— | 100 mm (4 in.)
— | | - | t | 0.5–2.5 mm (0.02–0.10 in.) diam.
0.5–2.5 mm (0.02–0.10 in.) diam. | | ⁽a) The recognised temper designations used in the relevant British Standards are also given. ⁽h) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. ⁽c) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. This table is based on American practice and the temper designations shown are those referred to in ASTM and other American Standards. For British and other European countries' practices, see tables 5.1.2 and 5.1.1, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | Form | Temper | Tensile | Yield
Strength
0.5% | Elo | ngation | | łockw
lardni | | Shear | Typical
Size
Related
to
Properties
Shown ^(a) | | |-------------------|--|--|--|----------------------------|---|----------------------------|----------------------------------|----------------------------|--|--|--| | | | Strength
psi | extension
under load
psi | % | gauge
length | F | В | 30 T | Strength
psi | | | | Flat
Products | Annealed (grain size 0.070 mm) (grain size 0.050 mm) (grain size 0.035 mm) (grain size 0.025 mm) (grain size 0.015 mm) | 53 000
55 000
57 000
59 000
61 000 | 18 000
19 000
21 000
24 000
28 000 | 43
42
40
37
34 | 2 in.
2 in.
2 in.
2 in.
2 in. | 69
73
79
82
89 | 22
31
39
46
55 | 27
33
41
46
53 | 40 000
42 000
43 000
44 000
45 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | (Sheet,
Strip) | Cold Worked Eighth Hard Quarter Hard Half Hard Hard Extra Hard Spring | 60 000
65 000
74 000
85 000
92 000
97 000 | 35 000
49 000
62 000
75 000
79 000 | 30
21
10
3
2 | 2 in.
2 in.
2 in.
2 in.
2 in. | | 60
70
80
87
90
92 | 55
63
70
75
77 | 42 000
43 000
44 000
51 000
53 000
58 000 | 0.040 in, thick
0.040 in, thick
0.040 in, thick
0.040 in, thick
0.040 in, thick
0.040 in, thick | | ⁽e) It is possible to obtain sizes different from those given in this column, but information on their mechanical properties should be obtained from metal manufacturers. #### 5.2 MECHANICAL PROPERTIES AT LOW TEMPERATURE ## 5.2.1 Tensile Properties-Impact Properties At the date of publication of this sheet, no data relating to this material have been traced. ## 5.3 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE ### 5.3.1 Short-Time Tensile Properties At the date of publication of this sheet, no data relating to this material have been traced. # 5.4 FATIGUE PROPERTIES #### 5.4.1 Fatigue Strength at Room Temperature At the date of publication of this sheet, no data relating to this material have been traced. # WROUGHT MATERIALS # COPPER-NICKEL-ZINC ALLOYS Nickel Silvers # Cu Nil8 Zn20 Common names: 18% Nickel Silver Nickel Silver 65-18 A copper-nickel-zinc alloy with an alpha phase structure. The alloy has good corrosion resistance to many organic products, waters and corrosive atmospheres. The material has good cold formability and spring properties and is widely used for telecommunications equipment in European practice; because of its attractive silver-blue-white colour, it is also widely used for decorative applications. The most commonly used wrought forms are sheet, strip, rod and wire. #### **COMPOSITION** (weight %) | Cu | | | 60.0-64.0 | |----|--|--|-----------| | Ni | | | 17.0-19.0 | | Mn | | | 0- 0.7 | | 7n | | | rem. | #### 1 SOME TYPICAL USES #### Decorative Holloware, flatware (spoons and forks), pressed, spun and deep-drawn articles usually silver plated; lighting fittings; medals and medallions; jewellery; architectural panels and trim (including marine service); "objets d'art". #### Electrical Relay and contact springs, wiper blades, cross-bar switches, control parts and uniselector components in telecommunications equipment; contacts, connectors, connector pins and terminals; resistance wire and strip for moderately elevated temperatures; lamp caps. #### Mechanical Springs and clips; rivets; bellows and pressure-sensitive devices. #### Miscellaneous Instrument and camera parts; etching stock, nameplates and dials; musical instruments; side wires of spectacle frames; slide fasteners; medical instruments; model construction. #### **2 PHYSICAL PROPERTIES** | | | | | | | | | | | | Metric Units | English Units | |------|--|--------------------------------------|--------|-------|------|--------|-------|-----|---|---|--|---| | .1 | Density at 20 °C | 68 °F | maayaa | | | | • | · | | | 8.75 g/cm ³ | 0.315 lb/in³ | | .2 | Melting range . | | | | | | | | | | 1 060–1 110 °C | 1 940–2 030 °F | | .3 | Coefficient of therm
20 to 100 °C
20 to 300 °C | al expa
68 to
68 to | 212° | F ` | ear) | at: | | | | | 0.000 015 per °C
0.000 016 ,, ,, | 0.000 008 per °F
0.000 009 ,, ,, | | .4 | Specific heat (therm | alcapa
68 °F | | at: | | | | | , | • | 0.10 cal/g °C | 0.10 Btu/lb °F | | 2.5 | Thermal conductivit
20 °C
200 °C | y at:
<i>68°F</i>
<i>392°F</i> | | • | | • | | | • | | 0.06 cal cm/cm ² s °C
0.07 | 15 Btu ft/ft² h °F
17 ,, | | .6 | Electrical conductivi
20 °C | ty (volu
<i>68 °F</i> | | | l or | cold | worke | ed) | | • | 3.5 m/ohm mm² | 6% IACS | | 2.7 | Electrical resistivity
20 °C | (volum
68 °F | | | l or | cold | worke | ed) | ٠ | | 0.29 ohm mm²/m
29 microhm cm | 173 ohms (circ mil/ft)
11 microhm in | | 2.8 | Temperature coeffic
20 °C
applicable over rang | 68 °F | (ann | ealec | OF- | cold : | worke | | | | 0.000 3 per °C (6% IACS) | 0.000 2 per °F (6% IACS) | | 2.9 | Modulus of elasticit annealed cold worked . | • • | | | | | '°F: | , | | | 13 300 kg/mm²
13 700 kg/mm² | 18 900 000 lb/in²
19 500 000 lb/in² | | 2.10 | Modulus of rigidity (
annealed
cold worked . | torsion | | | | | **F: | | | | 4 900 kg/mm²
5 000 kg/mm² | 7 000 000 lb/in²
7 200 000 lb/in² | N.B.: The values shown in Section 2, which have been appropriately rounded in view of the composition range involved, are based on selected literature references. The melting range covers the highest liquidus and lowest solidus temperatures over the composition range quoted. INDEX NUMBERS RELATE TO LITERATURE REFERENCES (see page 8); INDEX LETTERS RELATE TO
FOOTNOTES AT END OF TABLE Prepared by CONSEIL INTERNATIONAL POUR LE DEVELOPPEMENT DU CUIVRE (CIDEC) 100, rue du Rhône - 1204 GENEVE Distributed by COPPER DEVELOPMENT ASSOCIATION Orchard House, Mutton Lane, POTTERS BAR, Herts EN6 3AP DATA SHEET No. L 4 © Cu Ni18 Zn20 1973 Edition # **3 FABRICATION PROPERTIES** The information given in this table is for general guidance only, since many factors influence fabrication techniques. The values shown are approximate only, since those used in practice are dependent upon form and size of metal, equipment available, techniques adopted and properties required in the material. | | | | | | | | | Metric Units | English Units | |-----|---------------------------------------|-----|-----|-----|---|---|---|-----------------|------------------| | 3.1 | Casting temperature range . | | | | | • | • | 1 175–1 250 °C | 2 145–2 280 °F | | 3.2 | Annealing temperature range . | | | | | | | 625- 775 °C | 1 155-1 425 °F | | | Stress relieving temperature range | | | | , | | • | 250- 350 °C | 480- 660 °F | | 3.3 | Hot working temperature range . | | | | | | | 900- 975 °C | 1 650-1 785 °F | | 3.4 | Hot formability | | | | | | | Very li | mited | | 3.5 | Cold formability | | | | | | | Go | od | | 3.6 | Cold reduction between anneals | | | | | | | 70% (| max. | | 3.7 | Machinability: | | | | | | | See General Da | ita Sheet No. 2 | | | Machinability rating (free cutting br | ass | = 1 | 00) | | | | 25 | 5 | | 3.8 | Joining methods: | | | | | | | See General Dat | a Sheet No. 3.10 | | | Soldering | | | | | | | Very (| jood | | | Brazing | | | | | | | Excel | lent | | | Oxy-acetylene welding . | | | | | | | God | od | | | Carbon-arc welding | | | | | | | Not recom | mended | | | Gas-shielded arc welding . | | | | | | | Fai | ir | | | Coated metal-arc welding . | | | | | | | Not recom | | | | Resistance welding: spot and s | eam | | | | | , | Goo | | | | butt . | | | | | • | | Goo | | ## 4 NATIONAL SPECIFICATIONS FOR MANUFACTURED FORMS and ISO Recommendation | Country | Designation
of
Standards | Designation
of Material
in Standards | Specification
for Chemical
Composition ^(a) | Plate
Sheet
Strip | Rod | Wire | Tube | Sections Shapes | Forgings | |--|--------------------------------|--|---|-------------------------|--------|------------------|--------------|-----------------|----------| | Australia | SAA | NS106 | | H77 | _ | | _ | | | | Belgium | NBN | | _ | | | | _ | | _ | | Canada | CSA | HC.ZN 1817
752 | ****** | HC.4.4 | | | | _ | | | Chile | NCh
(INDITECNOR) | ****** | NCh 251 of. 68 | _ | | _ | _ | _ | _ | | France | NF | U-Z22 N18 | _ | A53-605 | _ | _ | | ***** | | | Germany | DIN | Cu Ni18 Zn20 | 17 663 | 1780
17 670 | 17 672 | 17 677
17 682 | 17 671 | | _ | | India | IS | NS18 | | 2283 | | | | _ | _ | | Italy | UNI | | _ | _ | _ | _ | | 9-0-4-mail | | | Japan | JIS | NSP 2 NSB 2
NSR 2 NSW 2 | _ | H3701 | H3711 | H3721 | | | | | Netherlands . | N or NEN (b) | Cu-Ni18 Zn20 | NEN 6030 | NEN 6033 | | brannel | | _ | _ | | South Africa . | SABS | | | _ | _ | _ | - | | | | Spain | UNE | Cu Zn Ni18 | | 37 103 | | | - | _ | | | Sweden | SIS | 52 46
Cu Ni18 Zn20 | _ | 14 52 46 | _ | _ | | , | | | Switzerland | VSM | Cu Ni18 Zn20 | 10 804 | 10 804 | 10 804 | 10 804 | 10 804 | _ | _ | | United
Kingdom | BS | NS106 | | 2870 | | 2873 | | _ | _ | | United States (c) | ASTM | No. 752 | | B 122
B 151 | B 151 | B 206 | _ | _ | _ | | International
Organization for
Standardization | ISO | Cu Ni18 Zn20 | R430 | | | | | | | ⁽a) Applicable when the chemical composition is not given in the specifications for wrought forms. ### 5 MECHANICAL PROPERTIES | 5.1 | Mechanical properties at room temperar | ture | | | |-----|--|------|--------|-------------| | | Tensile properties | see | tables | s 5.1.1/2/3 | | | Hardness | ** | 11 | 5.1.1/2/3 | | | Shear strength | • • | ,1 | 5.1.1/2/3 | | | Modulus of elasticity (tension) | | se | € 2.9 | | | Modulus of rigidity (torsion) | | | 2.10 | | 5.2 Mechanical properties at low temperature | | |--|-----------------| | Tensile properties | see table 5.2.1 | | Impact properties | no data | | 5.3 Mechanical | properties at elevated te | mperature | | | |----------------|---------------------------|-----------|-------|-------| | Short-time to | ensile properties | see | table | 5.3.1 | | Impact prop | erties | 19 | 11 | 5.3.1 | | Creep prope | rties | | no | data | | 5.4 | Fatigue properties | | |-----|--------------------------------------|-----------------| | | Fatigue strength at room temperature | see table 5.4.1 | ⁽b) Older specifications bear prefix N; for new specifications the NEN prefix is used. ⁽c) In the United States, bar and flat wire are covered under the Plate-Sheet-Strip column. # 5.1 MECHANICAL PROPERTIES AT ROOM TEMPERATURE (a) # 5.1.1 Typical Tensile Properties and Hardness Values-Metric Units This table is representative of practice in many European countries. For British and American practices, see tables 5.1.2 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | | | Tensile | Proof | EI | ongation | Har | dness | Shear | | | |----------------|--|----------------------|---------------------------------|--------------------|----------------------------------|--------------------------|--------------------------|----------------------|--|--| | Form | Temper | Strength
kg/mm² | Stress
0.2% offset
kg/mm² | % | gauge
length | Brinell | Vickers | Strength | Typical Size Related
to Properties Shown ^(b) | | | St 4 | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 42
45 | 19
22 | 45
40 | 50 mm
50 mm | 90
100 | 95
110 | 32
34 | 0.2–2 mm thick
0.2–2 mm thick | | | Sheet
Strip | Typicał
Cold Worked
Tempers | 48
54
62
70 | 36
46
55
67 | 25
15
9
3 | 50 mm
50 mm
50 mm
50 mm | 125
155
185
200 | 130
165
195
210 | 33
35
37
38 | 0.5–2 mm thick
0.2–2 mm thick
0.1–1 mm thick
0.1–1 mm thick | | | | Annealed | 41 | 17 | 43 | 5.65√S _o | 85 | 90 | 31 | 5-25 mm diam,
or equivalent area | | | Rod (c) | Typical
Cold Worked | 50 | 38 | 25 | 5.65√S _o | 140 | 145 | 35 | 5–25 mm diam.
or equivalent area | | | | Tempers | 60 | 55 | 10 | 5.65√S _n | 175 | 185 | 36 | 5–15 mm diam.
or equivalent area | | | | Annealed | 42 | _ | 38 | 100 mm | _ | | 32 | 0.5–3 mm diam. | | | Wire | Typical
Cold Drawn
Tempers | 58
70 | | 9
2 | 100 mm
100 mm | | _ | 35
38 | 0.5–3 mm diam.
0.2–1 mm diam. | | It will be noted that tables 5.1.1, 5.1.2 and 5.1.3, giving typical tensile properties and hardness values in Metric, SI and English, and American units respectively are not directly comparable. This is because the properties quoted reflect to some extent the metalworking techniques, specification practices and testing procedures in the countries concerned, and in view of the different sizes of products referred to in these tables. Individual manufacturers of semi-fabricated products can, however, normally meet the requirements of any national standard. It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. # 5.1.2 Typical Tensile Properties and Hardness Values—SI and English Units This table is based on British practice. For other European and American practices, see tables 5.1.1 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper (a) | | Tensile
Strength | | Proof Stress
0.1% offset | | Elongation | Vickers | Shear
Strength | | Typical Size Related | | |----------------|--|----------------|---------------------|----------------|-----------------------------|---------------|---|-------------------|-------------------|----------------|---|--| | · | I emper | hbar | ton/in² | hbar | ton/in² | % | gauge
length | Hardness | hbar | ton/in² | to
Properties Shown ^(b) | | | | Annealed
(grain size 0.030 mm)
(grain size 0.015 mm) | 42
45 | 27
29 | 17
23 | 11
15 | 40
35 | 50 mm (2 in.)
50 mm (2 in.) | 100
105 | 31
34 | 20
22 | 0.2–3 mm (0.008–0.12 in.) thick
0.2–3 mm (0.008–0.12 in.) thick | | | Sheet
Strip | Cold Worked
Half Hard
Hard
Extra Hard | 51
59
68 | 33
38
44 | 37
48
59 | 24
31
38 | 12
6
~2 | 50 mm (2 in.)
50 mm (2 in.)
50 mm (2 in.) | 155
180
205 | 36
39
45 | 23
25
29 | 0.2-3 mm (0.008-0.12 in.) thick
0.2-3 mm (0.008-0.12 in.) thick
0.2-3 mm (0.008-0.12 in.) thick | | | Rod (c) | Annealed | 40 | 26 | 15 | 10 | 40 | 5.65√ S ₀ | 95 | 29 | 19 | | | | NOU ** | Typical
Cold Worked Temper | 54 | 35 | 42 | 27 | 8 | 5.65√ S 。 | 165 | 37 | 24 | 4–12 mm
(0.16–0.5 in.) thick
or equivalent area | | | | Annealed | 42 | 27 | | | 35 | 100 mm (4 in.) | | 31 | 20 | 0.5–2.5 mm (0.02–0.10 in.) diam. | | | Wire | Cold Drawn
Half Hard
Hard | 63
77 | 41
50 | | | <5
— | 100 mm (4 in.)
— | | _ | | 0.5–2.5 mm (0.02–0.10 in.) diam.
0.5–2.5 mm (0.02–0.10 in.) diam. | | ⁽a) The recognised temper designations used in the relevant British Standards are also given. ⁽b) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. ⁽c) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. # 5.1.3 Typical Tensile Properties and Hardness Values-American Units This table is based on American practice and the temper designations shown are those referred to in ASTM and other American Standards. For British and other European countries' practices, see tables 5.1.2 and 5.1.1, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper | Tensile
Strength | Yield
Strength
0.5% | Strength Elongation | | | | rell
ess | Shear
Strength | Typical
Size
Related | |---|--|--|---------------------------------|---------------------|---|----------|---|---------------------|--|---| | | | psi | extension
under load
psi | % | gauge
length | F | В | 30 T | psi | to
Properties
Shown ^(a) | | Flat | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 58 000
60 000 | 25 000
30 000 | 40
32 | 2 in.
2 in. | 85
90 | 40
55 | | 44 000
45 000 | 0.040 in. thick
0.040 in. thick | | Products
(Sheet,
Strip, Bar
Flat Wire) | Cold Worked
Quarter Hard
Half Hard
Hard
Extra Hard
Spring | 65 000
74 000
85 000
92 000
97 000 | 50 000
62 000
74 000
— | 20
8
3
— | 2 in.
2 in.
2 in.
———————————————————————————————————— | | 73
83
87
92
94 | 65
72
75
— | 43 000
44 000
51 000
55 000
58 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.020 in. thick
0.020 in. thick | | Rod ^(b) | Annealed
(grain size 0.035 mm) | 56 000 | 25 000 | 42 | 2 in. | | 40 | | 42 000 | 0.50 in. diam. | | | Cold Worked
Half Hard | 70 000 | 60 000 | 20 | 2 in. | <u></u> | 78 | | 47 000 | 0.50 in. diam. | | | Annealed
(grain size 0.035 mm)
(grain size 0.015 mm) | 58 000
60 000 | 25 000
30 000 | 45
35 | 10 in.
10 in. | _ | *************************************** | | 44 000
45 000 | 0.080 in. diam.
0.080 in. diam. | | Wire | Cold Worked
Quarter Hard
Half Hard
Hard | 73 000
86 000
103 000 | 65 000
80 000
90 000 | 16
7
3 | 10 in.
10 in.
10 in. | <u>-</u> | | | 47 000
55 000
61 000 | 0.080 in. diam.
0.080 in. diam.
0.080 in. diam. | | | Annealed | 60 000 | 24 000 | 40 | 2 in. | _ | 45 | _ | 45 000 | 1.0 in. O.D. ×
0.065 in. wall | | Tube | Cold Worked
Hard Drawn | 80 000 | 65 000 | 5 | 2 in. | _ | 88 | _ | 52 000 | 1.0 in. O.D. × 0.065 in. wall | ⁽a) It is possible to obtain sizes different from those given in this column, but information on their mechanical properties should be obtained from metal manufacturers. ⁽b) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. # 5.2 MECHANICAL PROPERTIES AT LOW TEMPERATURE 5.2.1 Tensife Properties | Form | Temper | i i | ting
erature | Ter | sile Strer | ngth | Yield
Strength | Elongation
%
on 2 in. | Reduction of Area | |---------|-------------|------------|-----------------|--------------|------------|------------------|--|-----------------------------|-------------------| | | | °C | °F | kg/mm² | ton/in² | psi | psi | | | | | Annealed | 20
183 | 68
297 | 45.5
58.5 | 29
37 | 64 900
83 100 | 29 500 ^(a)
38 200 ^(a) | 46.8
56.8 | 62.3
69.5 | | Rod (1) | Cold Rolled | 20
—183 | 68
—297 | 52
66 | 33
42 | 73 800
93 700 | 69 300 ^(a)
80 500 ^(a) | 21.5
35.5 | 54.3
62.6 | ⁽a) Quoted as yield point, but offset strain not defined. N.B.: Original values are printed in **bold type**; other values are converted. Data not available: Proof stress, 0.1% and 0.2% offset and yield strength (0.5% extension under load). Impact Strength. #### 5.3 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE 5.3.1 Short-Time Tensile Properties-Impact Properties | | Temper | Test
Tempe | _ | Tensile
Strength | | | Proof
Stress | Elongation | | Reduction of | Impact
Strength ^(b) | | |--|-----------------|--|--|--|--|--|-----------------------|---------------------------------|---|--------------|---|---| | Form | | °C | °F | kg/mm² | ton/in² | psi | 0.2% offset
kg/mm² | % | gauge
length | | kg m/cm² | ft lb | | Strip (2) | Cold Worked (a) | 20
100
200 | 68
212
392 | 71
70
68 | 45
44.5
43 | 101 000
99 500
96 500 | 65
65
63 | 5
—
— | 50 mm | | | | | Rod ⁽³⁾
6 mm diam.
0.24 in. diam. | Annealed | 20
250
300
330
340
380
450 | 68
482
572
626
644
716
842 | 38.0
37.5
37.0

35.0

29.0 | 24
24
23.5
—
22
—
18.5 | 54 000
53 500
52 500
—
50 000
—
41 000 | | 40
38
38
36
—
50 | 30 mm
30 mm
30 mm
—
30 mm
—
30 mm | 65
— | 17.3
13.3
12.4
12.3
—
12.1 | 93.8
72.1
67.2
66.7
—
65.6 | Quoted as "hard, 208 HV" in original document, but amount of cold work not defined. N.B.: Original values are printed in **bold type**; other values are converted. All converted values for impact strength are to be taken as indicative only; the impact energy has been converted from kg m/cm² to ft lb taking into account the cross-sectional area of the specimen at the notch. Data not available: Proof stress, 0.1% offset. Yield Strength, 0.5% extension under load. Charpy test, V notch; cross sectional area at the notch 0.75 cm². #### 5.4 FATIGUE PROPERTIES # 5.4.1 Fatigue Strength at Room Temperature | Form | Tomas | Number
of | | Units
mm² | | h Units
/in² | American Units
psi | | | |---|--|--------------------------|---------------------|--|---------------------|--|-----------------------|-----------------------|--| | | Temper | Cycles × 10 ⁶ | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | | | Strip ⁽⁴⁾
0.30–0.35 mm
0.012–0.014 în. | Cold Rolled 50% | 10 | 68 | 19 (1) | 43 | 12 ^(f) | 96 500 | 27 000 ^(f) | | | Strip ⁽⁵⁾
1 mm
6.04 in. | Cold Worked ^(g)
37%
60.5% | 100
100 | 64.5
70.5 | 19.5 ^(h)
22 ^(h) | 41
44.5 | 12.5 ^(h)
14 ^(h) | 92 000
100 000 | 28 000 ^{(h} | | | Rod ^{(6) (d)}
13 mm diam.
0.5 in. diam. | Cold Worked 21% (c) | 300 | 51.5 | 16 | 32.5 | 10.5 | 72 900 | 23 000 | | | (e) (7) | Cold Drawn | 100 ^(a) | 44 | 15.5 ^(b) | 28 | 10 ^(b) | 62 400 | 22 000 ^(b) | | Estimated. Rotating-cantilever test. (d) Ready-to-finish grain size 0.030 mm. Composition: Cu 64.64%; Zn 16.22%; Ni 18.90%,; Mn 0.21%; Fe 0.03%. Form not stated in original document but probably rod (Composition: Cu 65.30%, Ni 17.63%, Zn 17.15%, Fe 0.23%). Flexural-alternating test. Ready-to-finish grain size 0.015 mm. Reversed-bending test. N.B.:— Original values are printed in **bold type**; other values are converted. — Further data can be obtained from the following paper: Weldon, B.A., Towers, J.A. and Patton, A.M. Nickel Silver as an Engineering Material. Metals & Materials, Vol. 4 (1970), pp. 299-303 (data for 1 mm strip, hardness 205 HV. deflected to maximum and returned to zero position). ## REFERENCES - KEFERENCES Strauss, J. Metals and Alloys for Industrial Applications Requiring Extreme Stability. Trans. ASST, Vol. 16, (1929), pp. 191-226. Weldon, B.A., Towers, J.A. and Patton, A.M. Nickel Silver as an Engineering Material. Metals & Materials, Vol. 4 (1970), pp. 299-303. Isler, P. and Form, W. The Mechanism of Fire-Cracking. J. Inst. Metals, Vol. 100 (1972), pp. 107-113. Kirchberg, K. Richtungsabhängigkeit der mechanischen Eigenschaften von Federwerkstoffen. Neue Hütte. Vol. 11, (1966), pp. 160-162. France, W.D. and Trout, D.E. Selecting Copper Alloys for Fatigue Applications. Metal Progress, Vol. 101 (1972), No. 6, pp. 69, 71-72. Anderson, A.R., Swan, E.F. and Palmer, E.W. Fatigue Tests on Some Additional Copper Alloys. Proc. ASTM, Vol. 46 (1946), pp. 678-692. McAdam, D.J., Jr. Fatigue and Corrosion-Fatigue of Spring Material. Trans. ASME, No. 51, (1929), pp. 45-58. # WROUGHT MATERIALS # COPPER-NICKEL-ZINC ALLOYS Nickel Silvers # Cu Nil8 Zn27 Common names: 18% Nickel Silver
Nickel Silver 55-18 A copper-nickel-zinc alloy with an alpha phase structure. The material, which is silver-white in colour, has good corrosion resistance to many organic products, waters and corrosive atmospheres. It is essentially a spring alloy widely used in the telecommunications field. The most commonly used wrought forms are sheet and strip. #### COMPOSITION (weight %) | Cu | | | 53.0-56.0 | |----|--|--|-----------| | Ni | | | 17.0-19.0 | | Mn | | | 0 0.5 | | Zn | | | rem. | #### 1 SOME TYPICAL USES #### Electrical Relay and contact springs, wiper blades, cross-bar switches, control parts and uniselector components in telecommunications equipment (for more arduous service conditions); contacts, connectors, connector pins and terminals. #### Mechanical Springs and clips. ### **2 PHYSICAL PROPERTIES** | | | | | | | | | Metric Units | English Units | |-----|---|-------------------------------|----------|-------|--------|--------------|----|---|--| | 2.1 | Density at 20 °C | 68 °F | • | • | , | | , |
8.70 g/cm³ | 0.315 lb/in³ | | 2.2 | Melting range . | | | | | | |
1 000-1 070 °C | 1 830–1 960 °F | | 2.3 | Coefficient of therma
20 to 100 °C
20 to 300 °C | l expan
68 to 2
68 to 5 | 12 °F | near) | at: | | |
0.000 016 per °C
0.000 017 ,, ,, | 0.000 009 per °F
0.000 009 ,, ,, | | .4 | Specific heat (therma
20 °C | l capad
<i>68 °F</i> | | | | | |
0.09 cal/g °C | 0.09 Btu/lb °F | | 2,5 | Thermal conductivity 20 °C | at:
<i>68</i> ° <i>F</i> | • | | | | |
0.06 cal cm/cm² s °C | 15 Btu ft/ft² h °F | | 2.6 | Electrical conductivit
20 °C | y (volur
<i>68 °F</i> (| | ed or | cold \ | worke | d) |
3.2 m/ohm mm² | 5.5% IACS | | 2.7 | Electrical resistivity (v
20 °C | /olume
68 °F (| | ed or | cold v | vorke | d) |
0.31 ohm mm²/m
31 microhm cm | 189 ohms (circ mil/ft)
12 microhm in | | 2.8 | Temperature coefficie
20 °C
applicable over range | 68 °F (| anneale | ed or | cold v | | |
0.000 3 per °C (5.5% IACS) | 0.000 2 per °F (5.5% IACS) | | 29 | Modulus of elasticity annealed cold worked . | (tensio | n) at 20 | | | ° F : | |
13 400 kg/mm²
14 000 kg/mm² | 19 100 000 lb/in ²
19 900 000 lb/in ² | | .10 | Modulus of rigidity (t
annealed
cold worked . | orsion)
 | at 20 ° | c | | °F: | |
5 000 kg/mm²
5 200 kg/mm² | 7 100 000 lb/in²
7 400 000 lb/in² | N.B.: The values shown in Section 2, which have been appropriately rounded in view of the composition range involved, are based on selected literature references. The melting range covers the highest liquidus and lowest solidus temperatures over the composition range quoted. INDEX NUMBERS RELATE TO LITERATURE REFERENCES (see page 6); INDEX LETTERS RELATE TO FOOTNOTES AT END OF TABLE Prepared by CONSEIL INTERNATIONAL POUR LE DEVELOPPEMENT DU CUIVRE (CIDEC) 100, rue du Rhône - 1204 GENEVE Distributed by COPPER DEVELOPMENT ASSOCIATION Orchard House, Mutton Lane, POTTERS BAR, Herts EN6 3AP © Cu Ni18 Zn27 1973 Edition ## **3 FABRICATION PROPERTIES** The information given in this table is for general guidance only, since many factors influence fabrication techniques. The values shown are approximate only, since those used in practice are dependent upon form and size of metal, equipment available, techniques adopted and properties required in the material. | | | | | | | | Metric Units | English Units | |-----|--|-------|--------|---|----|---|----------------|--------------------| | 3.1 | Casting temperature range . | | | • | , | | 1 150~1 225 °C | 2 100-2 235 °F | | 3.2 | Annealing temperature range . | | | | • | | 650- 800 °C | 1 200–1 470 °F | | | Stress relieving temperature range | | | | | | 250- 350 °C | 480- 660°F | | 3.3 | Hot working temperature range . | | | | | . | 850- 925 °C | 1 560~1 695°F | | 3.4 | Hot formability , , | | | | | | Very | l
limited | | 3.5 | Cold formability | | | | | | G | Good | | 3.6 | Cold reduction between anneals | | | | | | 65% | max. | | 3.7 | Machinability | | | | | | See General (| Data Sheet No. 2 | | | Machinability rating (free cutting bra | 15S = | = 100) | | | | | 30 | | 3.8 | Joining methods: , | | | | | | See General D | ata Sheet No. 3.10 | | | Soldering | | | | • | | Exc | cellent | | | Brazing | | | | | . | Exc | cellent | | | Oxy-acetylene welding . | , | | | | | G | ood | | | Carbon-arc welding | | | | | | Not reco | ommended | | | Gas-shielded arc welding . | | | | | | ı | Fair | | | Coated metal-arc welding . | | | | | | Not reco | ommended | | | Resistance welding: spot and se | eam | | | ٠. | . | G | ood | | | butt . | | | | | | G | ood | # 4 NATIONAL SPECIFICATIONS FOR MANUFACTURED FORMS and ISO Recommendation | Country | Designation
of
Standards | Designation
of Material
in Standards | Specification
for Chemical
Composition (a) | Plate
Sheet
Strip | Rod | Wire | Tube | Sections Shapes | Forgings | |--|--------------------------------|--|--|-------------------------|--------|--------|------|-----------------|--| | Australia | SAA | NS107 | _ | H 83 | | _ | _ | | | | Belgium | NBN | Cu55 Ni18 Zn | - | 266.41 | 266.41 | 266.41 | | _ | _ | | Canada | CSA | HC. ZN2718
770 | _ | HC.4.4 | _ | - | _ | _ | | | Chile | NCh
(INDITECNOR) | _ | NCh 251 of. 68 | _ | _ | | _ | | | | France | NF | U-Z27 N18 × 85 | _ | A53-605 | | _ | | _ | _ | | Germany | DIN | _ | | _ | | | _ | | | | India | IS | Cn Ni18 Zn27 | | 3332 | | | | _ | * deviden | | Italy | UNI | _ | | <u>—</u> | _ | | | | _ | | Japan | JIS | NSSP NSBS
NSSR NSWS
NSSPS NSSRS | _ | H3702 | H3711 | H3721 | | | _ | | Netherlands . | N or NEN (b) | Cu-Ni18 Zn27 | NEN 6030 | NEN 6033 | | _ | | | | | South Africa . | SABS | _ | _ | _ | _ | | _ | _ | | | Spain | UNE | Cn Zn Ni54-18 | _ | 37 103 | 37 103 | 37 103 | _ | | | | Sweden | SIS | _ | -01-1-1-1-1-1 | _ | | _ | | | | | Switzerland | VSM | Cu Ni18 Zn27 | 10 804 | 10 804 | _ | _ | | _ | | | United
Kingdom | BS | NS107 | _ | 1824
2870 | _ | 2873 | _ | | ************************************** | | United States (c) | ASTM | No. 770 | | B 122
B 151 | B 151 | B 206 | _ | _ | _ | | International
Organisation for
Standardization | ISO | Cu Ni18 Zn27 | R430 | | | _ | _ | _ | | ⁽a) Applicable when the chemical composition is not given in the specifications for wrought forms. ## **5 MECHANICAL PROPERTIES** | 5.1 Mechanical properties at room temper | rature | | | |--|--------|---------|-------------------| | Tensile properties | see t | ables 5 | 5.1.1/2/3 | | Hardness | ,, | ,, 5 | .1.1 /2/ 3 | | Shear strength | 11 | ,, 5 | .1.1/2/3 | | Modulus of elasticity (tension) | | see 2 | 9 | | Modulus of rigidity (torsion) | | ., 2 | .10 | | 5.2 | Mechanical properties at low temperature
Tensile properties
Impact properties | | no | data | |-----|---|----------|-------|-------| | 5.3 | Mechanical properties at elevated temperature
Short-time tensile properties
Impact properties
Creep properties | e
see | table | | | 5.4 | Fatigue properties Fatigue strength at room temperature | see | table | 5,4.1 | ⁽b) Older specifications bear prefix N; for new specifications the NEN prefix is used. ⁽c) In the United States, bar and flat wire are covered under the Plate-Sheet-Strip column. ## 5.1 MECHANICAL PROPERTIES AT ROOM TEMPERATURE * ## 5.1.1 Typical Tensile Properties and Hardness Values-Metric Units This table is representative of practice in many European countries. For British and American practices, see tables 5.1.2 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. For a given temper, individual elongation values may show some variation above or below the typical values indicated. | Form | Temper | Tensile
Strength | Proof
Stress | Elongation | Haro | iness | Shear | Typical Size Related
to Properties Shown (a) | | |----------------|-----------------------------------|---------------------|-----------------------|---------------|-------------------|-------------------|--------------------|--|--| | 1 0//// | | kg/mm² | 0.2% offset
kg/mm² | %
on 50 mm | Brinell | Vickers | Strength
kg/mm² | | | | | Annealed | 44 | 21 | 48 | 100 | 105 | 33 | 0.2–2 mm thick | | | Sheet
Strip | Typical
Cold Worked
Tempers | 65
74
80 | 58
68
75 | 6
4
2 | 190
215
225 | 200
225
235 | 42
44
45 | 0.2-2 mm thick
0.1-1 mm thick
0.1-1 mm thick | | ⁽a) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. ### 5.1.2 Typical Tensile Properties and Hardness Values-SI and English Units This table is based on British practice. For other European and American practices, see tables 5.1.1 and 5.1.3, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper ^(a) | Tensile
Strength | | Proof Stress
0.1% offset | | Elongation | | Vickers | Shear
Strength | | Typical Size Related | | |-----------
--|----------------------|----------------------|-----------------------------|----------------------|---------------------|--|------------|-------------------|---------|--|--| | | | hbar | ton/in² | hbar | ton/in² | % | gauge
length | Hardness | hbar | ton/in² | Properties Shown ^(b) | | | Strip (c) | Annealed
Grade 5—Soft
(grain size 0.030 mm) | 42 | 27 | 19 | 12 | 45 | 50 mm (2 in.) | 100 | 31 | 20 | 0.2-1 mm (0.008-0.04 in.) thick | | | | Cold Worked
Grade 4
Grade 3
Grade 2
Grade 1—extra hard | 53
57
63
77 | 34
37
41
50 | 37
45
54
68 | 24
29
35
44 | 25
15
8
~2 | 50 mm (2 in.)
50 mm (2 in.)
50 mm (2 in.)
50 mm (2 in.) | 180
210 | _
_
_
46 | _ | 0.2-1 mm (0.008-0.04 in.) thick
0.2-1 mm (0.008-0.04 in.) thick
0.2-1 mm (0.008-0.04 in.) thick
0.2-1 mm (0.008-0.04 in.) thick | | | Rod (d) | Annealed | 40 | 26 | 17 | 11 | 45 | 5.65√S _。 | 95 | 29 | 19 | _ | | | Kou *** | Typical
Cold-Worked Temper | 60 | 39 | 48 | 31 | 10 | 5,65√S _。 | 190 | 42 | 27 | 4–12 mm (0.16–0.5 in.) diam.
or equivalent area | | | | Annealed | 42 | 27 | P | _ | 40 | 100 mm (4 in.) | | 31 | 20 | 0.5–2.5 mm (0.02–0.10 in.) diam. | | | Wire | Cold Drawn
Half Hard
Hard | 68
80 | 44
52 | _ | Parkeys | <5
— | 100 mm (4 in.)
 | | | | 0.5–2.5 mm (0.02–0.10 in.) diam.
0.5–2.5 mm (0.02–0.10 in.) diam. | | ⁽a) The recognised temper designations used in the relevant British Standards are also given. ⁽b) It is possible to obtain sizes outside the ranges given in this column, but information on their mechanical properties should be obtained from the metal manufacturers. ⁽c) Material for the telecommunications industry. ⁽d) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. ^{*} It will be noted that tables 5.1.1,5.1.2 and 5.1.3, giving typical tensile properties and hardness values in Metric, SI and English, and American units respectively are not directly comparable. This is because the properties quoted reflect to some extent the metalworking techniques, specification practices and testing procedures in the countries concerned, and in view of the different sizes of products referred to in these tables. Individual manufacturers of semi-fabricated products can, however, normally meet the requirements of any national standard. #### 5.1.3. Typical Tensile Properties and Hardness Values-American Units This table is based on American practice and the temper designations shown are those referred to in ASTM and other American Standards. For British and other European countries' practices, see tables 5.1.2 and 5.1.1, respectively. The values shown represent reasonable approximations for general engineering use, taking account of variations in composition and manufacturing procedures. For design purposes, national specifications should be consulted. | Form | Temper | Tensile
Strength | Yield
Strength
0.5% | Elo | ngation | Rockwell
Hardness | | | Shear
Strength | Typical
Size
Related | |--|--|---|--------------------------------|---------------------|-----------------------------|----------------------|----------------------------|----------------|--|---| | FOIM | | psi | extension
under load
psi | % | gauge
length | F | В | 30 T | psi | to
Properties
Shown ^(a) | | Flat | Annealed
(grain size 0.035 mm) | 60 000 | 27 000 | 40 | 2 in. | 90 | 55 | VIII. | 45 000 | 0.040 in. thick | | Products (Sheet, Bar and Strip, Flat Wire) | Cold Worked
Quarter Hard
Half Hard
Hard
Extra Hard
Spring | 78 000
90 000
100 000
108 000
115 000 | 85 000
90 000 |
3
2.5
2.5 |
2 in.
2 in.
2 in. |

 | 72
83
91
96
99 | 77
80
81 | 54 000
62 000
65 000
70 000
74 000 | 0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick
0.040 in. thick | | | Annealed | 60 000 | 24 000 | 45 | 2 in. | | 50 | - | 45 000 | 1.0 in. diam. | | Rod ^(b) | Cold Worked
Hard | 80 000 | 60 000 | 15 | 2 in. | | 80 | - | 56 000 | 1.0 in. diam. | | | Annealed
(grain size 0.035 mm) | 60 000 | _ | 40 | 10 in. | _ | _ | _ | 45 000 | 0.080 in. diam. | | Wire | Cold Worked
Extra Hard
Spring (68%) | 120 000
145 000 | | 2
1.5 | 10 in.
10 in. | | _ | | 78 000
87 000 | 0.080 in. diam.
0.080 in. diam. | ⁽a) It is possible to obtain sizes different from those given in this column, but information on their mechanical properties should be obtained from metal manufacturers. ⁽b) The mechanical properties will be largely dependent upon the size and cross-sectional area or complexity of the product. # 5.2 MECHANICAL PROPERTIES AT LOW TEMPERATURE # 5.2.1 Tensile Properties-Impact Properties At the date of publication of this sheet, no data relating to this material have been traced. # 5.3 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE # 5.3.1. Short-Time Tensile Properties | Form | Temper | | Testing
Temperature | | sile Strengt | h | Proof Stress | Elongation | |-----------|----------------------------|------------------|------------------------|----------------|--------------------|-------------------------------|----------------|------------| | | | С | °F | kg/mm² | ton/in² | psi | kg/mm² | on 50 mm | | Strip (1) | Cold Worked ^(a) | 20
100
200 | 68
212
392 | 80
81
78 | 51
51.5
49.5 | 114 000
115 000
111 000 | 69
73
77 | 2 | ⁽a) Quoted as "hard, 240 HV" in original document, but amount of cold work not defined. N.B.:— Original values are printed in **bold type**; other values are converted, — Data not available : Proof stress, 0.1% offset, Yield strength, 0.5% extension under load, ## 5.4 FATIGUE PROPERTIES # 5.4.1 Fatigue Strength at Room Temperature | Form | Temper | Number
of | | : Units
nm² | | h Units
/in² | American Units
psi | | |--|---|-----------------------------|------------------------|--|----------------------------|--|---|--| | | | Cycles
× 10 ⁶ | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | Tensile
Strength | Fatigue
Strength | | | Annealed | 100 | 43.5 | 11 ^(a) | 28 | 7 (a) | 62 200 | 16 000 ^(a) | | Strip ⁽²⁾
0.51 mm
0.02 in. | Cold Worked
37.2%
50% ^(b)
60.5% ^(c)
68% | 100
100
100
100 | 67
76.5
79
83 | 14.5 ^(a)
16 ^(a)
16.5 ^(a)
17.5 ^(a) | 42.5
48.5
50
52.5 | 9 (a)
10.5 (a)
10.5 (a)
11 (a) | 95 400
108 500
112 400
117 700 | 20 500 ^(a)
23 000 ^(a)
23 750 ^(a)
25 000 ^(a) | | Strip ⁽²⁾
0.64 mm
0.025 in. | Cold Worked 20.7% | 100 | 56 | 16 ^(a) | 35.5 | 10.5 ^(a) | 79 300 | 23 000 (a) | | Strip ⁽³⁾
1 mm
0.04 in. | Cold Worked ^(d)
37%
60.5% | 100
100 | 76
82.5 | 20.5 ^(a)
22.5 ^(a) | 48
52 | 13 ^(a)
14,5 ^(a) | 108 000
117 000 | 29 000 ^(a) 32 000 ^(a) | Reversed-bending test, N.B.:— Original values are printed in **bold type**; other values are converted, — Further data can be obtained from the following paper: Weldon, B.A., Towers, J.A. and Patton, A.M. Nickei Silver as an Engineering Material. Metals & Materials. Vol. 4 (1970), pp. 299-303. #### REFERENCES #### **MECHANICAL PROPERTIES (SECTION 5)** Weldon, B.A., Towers, J.A. and Patton, A.M. Nickel Silver as an Engineering Material. Metals & Materials, Vol. 4 (1970), pp. 299-303. Gohn, G.R., Guerard, J.P. and Herbert, G.J. The Mechanical Properties of Some Nickel Silver Alloy Strips. Proc. ASTM, Vol. 54 (1954), pp. 229-256. France, W.D. and Trout, D.E. Selecting Copper Alloys for Fatigue Applications. Metal Progress, Vol. 101 (1972), No. 6, pp. 69, 71-72. ⁽b) Ready-to-finish grain size 0,022 mm. Ready-to-finish grain size 0,090 mm. Ready-to-finish grain size 0.015 mm.