

LIBERTY

Ageing, performance and safety – developed test procedures, gained test results and the way of reporting them

Nick De Bie (FM)

Christoph Breitfuss (VIF)

November 29th 2023

Lightweight Battery System for Extended Range at Improved Safety

LIBERTY has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963522. The document reflects only the author's view, the Agency is not responsible for any use that may be made of the information it contains.

- Overview on LIBERTY project
- Safety Testing
- Aging and Performance Testing

Overview on LIBERTY project

LIBERTY - Lightweight Battery System for Extended Range and Improved Safety

- Overall target: upgrading EV battery performance, safety and lifetime from a lifecycle and sustainability point of view
- 16 Partners from 7 countries
- Website: <u>www.libertyproject.eu</u>
- Start date: January 2021
- Duration: 42 months

- Lightweight Battery System for Extended Range at Improved Safety
 - □ Objective 1: To achieve a range of 500 km on a fully charged battery pack
 - □ Objective 2: To achieve a short charging time
 - □ Objective 3: To achieve an ultimately safe battery system
 - □ Objective 4: To achieve a long battery lifetime
 - □ Objective 5: To achieve sustainability over the battery pack's entire life cycle

Parameter	Benchmark: EQC 2019	Target: LIBERTY EQC
Battery system capacity [kWh]	80	96
Battery system weight based on 80 kWh battery capacity [kg]	650	520
Max. charging power [kW]	110	350
Charging window 10-80% SoC [min]	40	18
Range (WLTP) [km]	417	500
Battery life (no. of cycles to 80% DoD)	500	1000
Mileage [km]	160,000	>300,000

Safety Testing

Mechanical Cell Testing

Quasi- static cell tests:

Load Case	Axi s	Tests	Boundary	Speed	SOC	Sketch
Cylindrical Indention	Х	3	-	1mm/s	0%	
Cylindrical Indention	Y	3	-	1mm/s	0%	
Flat Crush	х	3	-	1mm/s	0%	I
Flat Crush	Υ	3	-	1mm/s	0%	**

Dynamic cell tests:

Load Case	Axi s	Tests	Boundary	Speed	SOC	Sketch
Cylindrical Indention	Y	3	Mass = 91 Kg	3.5 m/s	0%	
Cylindrical Indention	Υ	3	Mass = 200 Kg	2.4 m/s	0%	
Cylindrical Indention	Y	2	Mass = 200.Kg	2.4 m/s - without electrolyte	0%	

Mechanical Cell Testing

Increased loading speed:

- The cell will be stiffer at the beginning
- Clear and higher first peak
- Earlier short circuit

Absence of Electrolyte:

- Reduced or no plateau after first peak
- Stiffer behavior as the deformation proceed
- Max. force value is almost equal to the QS case

Thermal Runaway Cell Testing

- Six TR-tests on cells performed
 - TR by overtemperature (4 tests) & TR by nail penetration (2 tests)
- Maximum average cell temperature ~571°C in all tests
- ~4.3 mol of vent-gas released per cell

Example test TS0011 - overtemperature

Quasi- static / Dynamic tests cell stack:

Load Case	Axi s	Tests	Boundary	Speed	Speed SOC	
Cylindrical Indention	Y	1	Preforce = 1kN	1mm/s	0%	
Cylindrical Indention	Y	1	Mass = 200 Kg, Preforce = 1 kN	3.5m/s	0%	

Mechanical Cell Stack Testing

- Max force is higher
- Displacement is higher
- Short circuit:
 - First cell (quasi-static)
 - Not occurred (dynamic)
- Stack improves the strength and energy absorption

Thermal Runaway Cell Stack Testing

- TR test with 3-cell stack
 - Cells partially immersed in cooling oil, cooling through oil spray
 - Cooling improved from tests with 12-cell stack
 - More powerful cooler and better heat exchanger
 - TR-mechanism → nail penetration

- No TR-propagation from trigger cell to neighbouring cell
- Highest temperature on non-trigger cell ~190°C
- TR-propagation stopped by oil spray cooling system

Performance Testing

Performance testing - overview

Overview:

Electrical characterisation:

□ Capacity tests, (Q)OCV vs. SoC, HPPC, EIS & fast-charging tests

□ Input for cell-model

□ Development of SoX algorithms

Thermal characterisation:

□ Thermal conductivity tests

□ Input for cell-model

□ Development of the thermal management system

Cycling:

- □ Variables are temperature, C-Rate, middle-SOC and depth-of-discharge (DOD)
- □ Frequency of check-ups is based on full-equivalent cycles
- □ Ageing evaluation is done on capacity decay and internal resistance

				Cycling	test mai	trix				
	ΔDoD	100	80	70	50		20		1	0
	Middle SoC		50	45	50	80	50	20	80	50
Temp.	C-Rate (CH-DCH)									
1500	C/3 - C/3		C15-12							
15-0	C/3 - 1C		C15-13							
	C/3 - C/3		C15-07	C01-63						
	1C-C/3		C15-08	C01-61						
25°C	C/3 - 1C	C01-65	C01-64	C01-67 C15-09	C01-66	C01-59	C01-60	C01-62	C15-10	C15-11
	2C - C/3 (With cooling)			C01-68						
	4C - C/3 (With cooling)			C01-58						
AFRO	C/3 - C/3		C01-71							
45.0	C/3 – 1C		C01-70							

- Calendar life:
 - □ Variables are temperature and SOC
 - □ Temperature is changed each month according to temperature profile
 - □ Frequency of check-ups is time-based (months)
 - □ Ageing evaluation is done on capacity decay and internal resistance

Calendar life test matrix												
Temp / SoC	100	80	50	20								
15₋°C		C14-004										
25₋°C	C14-007	C14-006	C14-008	C14-009								
45₋°C		C14-010										

	Variable 1, Cold climate (Munich)														
MONTH	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEPT	ОСТ	NOV	DEC	AVG		
MEAN T [°C]	2.7	4.3	9	12.5	18	20.5	23.1	23	18.8	13.2	6.9	3.7	12.98		
				Var	iable 2,	Hot cl	imate (S	Seville)							
MONTH	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEPT	OCT	NOV	DEC	AVG		
MEAN T [°C]	16.5	18	21.8	23.8	27	32	35.5	34.5	30.5	25.5	20.2	16.8	25.2		

Validation profiles:

□ Realistic driving profiles (incl. fast-charging):

- Realistic 1: commuting to work combined with trips during the weekend (both slow and fast-charging)
- Realistic 1 accelerated: same as Realistic 1 but without pauses
- Realistic 2: same as Realistic 1 but without fast-charging
- □ Frequency of check-ups is based on full-equivalent cycles
- □ Ageing evaluation is done on capacity decay and internal resistance

Validation profiles							Vari	able 1,	Cold cli	imate (I	Munich)					
Temperature / Profile	Realistic 1	Realistic 2	Realistic profile 1 Accelerated	MONTH MEAN T	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEPT	ост	NOV	DEC	AVG
Variable 1 (cold climate)		C01-056		[°C]	2.7	4.3	9	12.5	18	20.5	23.1	23	18.8	13.2	6.9	3.7	12.98
25°C	C01 72	C01.057	7 001 073		ř.,	1	Î.	Var	iable 2,	Hot cli	mate (S	Seville)	·	4	4	P	1
25 0	001-12	001-007	001-013	MONTH	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEPT	OCT	NOV	DEC	AVG
Variable 2 (hot climate)		C14-11		MEAN T [°C]	16.5	18	21.8	23.8	27	32	35.5	34.5	30.5	25.5	20.2	16.8	25.2

Performance testing – cell-stack testing

Cycling tests on cell-stack with 3 and 12 cells:

□ Focus on fast-charging and development of thermal management system

Cycling tests will be repeated on final cell-stacks used in battery pack (14 and 24-cells):

□ Focus on fast-charging for selection of optimal nozzle configuration

□ Lifetime tests (validation profiles) for development of lifetime model of battery system

- Battery system will be tested according to battery system test plan developed in LIBERTY:
 - □ Includes functional testing, performance testing, safety testing and vehicle level testing
 - □ All test descriptions contain objective, start criteria, test sequence and validation criteria
 - □ Transportation and troubleshooting procedures are also described

Contacts:

nick.debie@flandersmake.be

christoph.breitfuss@v2c2.at

Lightweight Battery System for Extended Range at Improved Safety

LIBERTY has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963522. The document reflects only the author's view, the Agency is not responsible for any use that may be made of the information it contains.