

Manufacturing and assembly of modular and reusable EV battery for environment-friendly and lightweight mobility

COLLABAT Webinar – Testing subcluster Against all odds: cell testing activities in MARBEL and modelling approaches

PRESENTER NAME: Daniel Koch EMAIL: daniel.koch@carissma.eu DATE: 29.11.2023

Against all odds??

struggle #1: getting the cells!

- decision on cells to be used done
- \rightarrow test cells ordered in after negotiations in summer 2021
- \rightarrow manufacturer mentions October as delivery date
- \rightarrow silence.....
- \rightarrow October passes by....
- \rightarrow asking for updates....
- \rightarrow silence...
- → manufacturer says October can't be kept anymore.. surprise!
- \rightarrow new date: end of November 2021
- \rightarrow accepted...
- \rightarrow manufacturer wants test plan with every info about planned tests
- \rightarrow test plan delivered to manufacturer...

- money transferred to manufacturer
- end of November 2021: money received, but cells can't be delivered, since no customer account created (?!)
- mid December 2021: update??
- can't ship, since no GTCs defined
- beginning January 2022: we ask for an update
- silence....

...to be continued...

<u>4. Testing approach – including Al</u>

- Overall target: Validate and benchmark MARBEL BP system's performance and safety
- Derive innovative test procedures to reduce time and cost effort in future testing
- Combine system knowledge from other WPs and test results as a base for an AI model algorithm
- Use the AI-model output to
 - reflect the test procedures and improve them
 - validate the scalability of test results
- This will be achieved by following concepts:
 - start testing from early development stages
 - interact with other WPs to build a strong AI knowledge base
 - include publicly available data for AI training
 - mechanical tests with a miniaturized housing of the novel BP
 - validate the system behaviour at full scale in a novel test environment eVIL "electric-vehicle-in-the-loop"

...what about the cells though..??

\rightarrow end January 2022: test cells arrive!!

source: giphy.com

struggle #2: contacting the cells + starting test with literally 0 information!

currently in use for testing: laser-welded aluminum tabs

MARBEL

start off with cell testing

5. Against all odds??

... in the meantime... ordering (or trying to) the big batch of cells for manufacturing modules + packs...

sounds easy? \rightarrow :D \rightarrow wait a second for...

struggle #3 or "the real struggle": no more cells from the manufacturer!

need for changing the test strategy and adapting to new cells..

 $\overline{}$

CARISSMA

Technische Hochschule

adapting cell test strategy

testing activities

MARBEL

Concept Cooling Test Setup (2p configuration, "module-like" setup)

cells pos. terminal

Scopes of this investigation:

- validate and adapt thermal model (detect hotspots, sensor placement?, ...)
- investigate swelling behavior of cells in a module-like compound
- keep the cells cycling and investigate degradation

testing activities

thermal properties of the cells:

- therm. conductivity in x, y and z-direction
- therm. capacity
- input for thermal model
- validation of assumptions used for modelling

abusive testing activities

full pack level validation

eVIL test-bench:

- test performance at full scale
- no need of integrating battery in a certain vehicle
- no constraints in terms of dimension / power demands
- complete freedom in package design
- high level of modularity
- battery and motor test bench not necessarily at same location

modeling activities

data driven model, picture from [2]

Main input from testing: characterization tests, pulseprofile tests

equivalent circuit model

MARBE

- [1] J. G. Corominas, A. B. Escoda, D. Koch, R. Albrecht, H.-G. Schweiger, "Virtual development of a thermal management system of a high performance battery for electric vehicles," in Proceedings of the FISITA 2023 World Congress, Barcelona, 12 15 September 2023.
- [2] Afroditi Fouka, Alexandros Bousdekis, Katerina Lepenioti, Gregoris Mentzas, "Modelling Data-Driven Digital Twins of EV Batteries for Predictive Analytics", in Proceedings of the 14th International Conference on Information, Intelligence, Systems and Applications (IISA2023), Volos, Greece, Juli 2023. doi: 10.5281/zenodo.8181384.

Manufacturing and assembly of modular and reusable EV battery for environment-friendly and lightweight mobility

THANK YOU!

PRESENTER NAME: Daniel Koch EMAIL: daniel.koch@carissma.eu DATE: 29.11.2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 963540 A project coordinated by:

eurecaț