
COLLABAT Testing & Validation Webinar, 29.11.2023

Cell testing in HELIOS for parameterization of digital twins

C. Ziebert¹, A. Jensen¹, O. Böse², F. Naseri³, C. Barbu³

¹ Karlsruhe Institute of Technology (KIT), ²Danish Technological Institute (DTI), ² Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) ³ Aarhus University (AU)

HELIOS

å 35

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963646

This document reflects the view of its author(s) only. The funding agency is not responsible for any use that may be made of the information it contains.

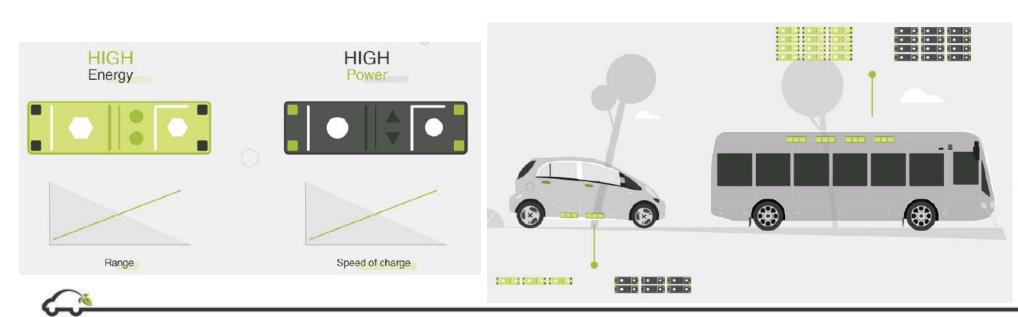
SOH 80

End of test

HELIOS Project Overview

High-performance modular battery packs for sustainable urban electromobility services

- ✓ Funded under EU Horizon2020
 total EC grant approx. 10 Mio €
- Runtime Jan 2021 to Dec 2024 (48 months)
- 18 consortium partners from 8 countries
- Vebsite: www.helios-h2020project.eu
- **Project Coordinator:**


Prof. Corneliu Barbu Aarhus Universitet coba@ece.au.dk

HELIOS

HELIOS General Project Objectives

- new concept of smart, modular and scalable battery pack for a wide range of electric vehicles:
 - 2 use cases for prototypes: small city car and full-size electric bus
- improved performance, energy density, safety, lifetime and LCoS (Levelized Cost of Storage)
- optimised EV charge (incl super-fast charging) and discharge procedures and predictive maintenance schedules
- creating new designs and processes for ease of battery reuse in 2nd-life and recycling at EoL, contributing to circular economy

i-MiEV at AU

Demonstrator

Sileo S12 e-bus produced by Bozankaya

SHELIOS **HELIOS** Main building blocks 10 **Digital Twin** nvision 🗭 **RDI UP** AARHUS UNIVERSITY Fleet management platform RDI'UP Bozankaya IoT platform nvision 🚯 **A! 9** Nozankaya PHM, predictive Aalto Universit **Decision Support System** Smart planning tool CO₂ traceability maintenace Circular design of battery packs Data acquisition and Graphical User Interface Optimisation of A! ଜ European Copper Institute storage 7 circular processes TEKNOLOGISK INSTITUT **Multilevel converters A! IREC**⁹ vitesco IPEC vilesco Bozankaya 10 BMS Asito Universit **SKIT** LCA, LCC tools 2SW Converters for କ୍ର 9 SOC and SOH vitesco Multisensing unit Cu Copper Institute high-power charging Battery testing & Control Unit Cell Balancing Modelling 7 New BM, products and Hybrid termal Copper Institute Wiring & connections VESTEL TEKNOLOGISK 10 services (Kneia AARHUS LINEVERSITY INSTITUT management European Copper Institute Hybrid Li-ion module * system 150-360 kW charger TUBITAL configuration RUTE V2G କ୍ର Advanced materials for housing and insulation 図 IREC

14.07.2022

HELIOS Cell Testing

Key objectives

- Determination of the coupled electrochemical, thermal and safety data either as required input parameters for the modelling or as validation data for the simulation results
- *Elucidating ageing processes by cyclic and calendaric ageing study and post-mortem analysis*

Electrochemical and Thermal Characterization

Cycling Test	Ch	Dch
Adiabatic Cycling Test (ARC)	0.5C	0.5C, 1C, 1.5C
Isothermal Cycling Test	0.5C	0.5C, 1C, 1.5C, 2C, 2.5C, 3C
Specific Heat Capacity		
Heat Transfer Coefficient	0.5C	0.5C, 1C, 1.5C
Thermal Conductivity or Thermal Resistance		HE cells

Cycling Test	Ch	Dch
Adiabatic Cycling Test (ARC)	1C, 3C	1C, 2C, 3C
Isothermal Cycling Test	1C, 3C	4C, 5C
Specific Heat Capacity		
Heat Transfer Coefficient	1C	1C, 2C, 3C
Thermal Conductivity or		P cells
Thermal Resistance		cells
00		

SOC
100%
75%,50%,25%, 0%
100%
100 %
>100%
<0%
100%
100%, 75%, 50%, 25%, 0%
100%
100%

Safety Testing

Ageing Study

Cyclic Ageing HE cells

	Ch/Dch	SOC limits		Temp [°C]	
High temp	0.5C/1C	0%	100%	50	
High temp	0.5C/1C	0%	100%	40	
Normal temp	0.5C/1C	0%	100%	25	
Normal temp	1C/1C	0%	100%	25	
Fast discharge	0.5C/3C	0%	100%	25	

HP cells

	Ch/DCh	SOC limits		Temp [°C]
Fast charge	2.5C/1C	0%	100%	25
Fast charge	5C/1C	0%	100%	25
Fast discharge	1C/5C	0%	100%	25

Ageing Study

Calendaric Ageing

1st delivery of cells: 2nd delivery of cells:

40 cells on M6 300 cells on M24

significant changes had to be made to the aging matrix to optimize use of resources within the time left in the project

DOE approach for matrix reduction: 19 instead of 38 tests

Temperature and SOC values as proposed by DoE approach

Temperature	SoC values(%)				
25 °C	7.5%	37%	65%	93%*	
40 °C	0%	50%**	75%	100%*	
60 °C	0%	25%	50%	75%	100%

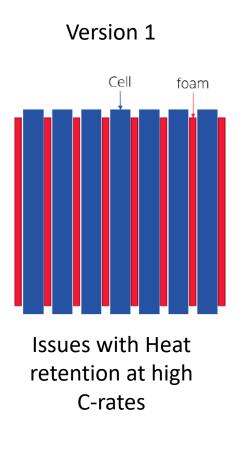
* 2 replicates **4 replicates

Expected duration of tests: 12 months calendaric aging

Map of SoC and Temperature points for testing based on DoE approach using design expert 13

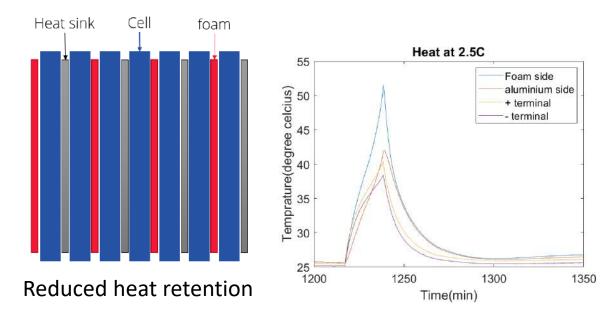
100

80 -


60 40 20 0 32 39 46 53 60 DANISH DANISH TECHNOLOGICAL TECHNOLOGICAL A:Temp. (Celcius)


SKIT

24.04.2023 6



Improvement of fixture design

Important input for TMS design in WP3

HELIOS

time to reach 30 °C from 50 °C reduced from around 37 min with the pure foam setup to around 25 min for the foam heat sink setup

7 17.01.2023

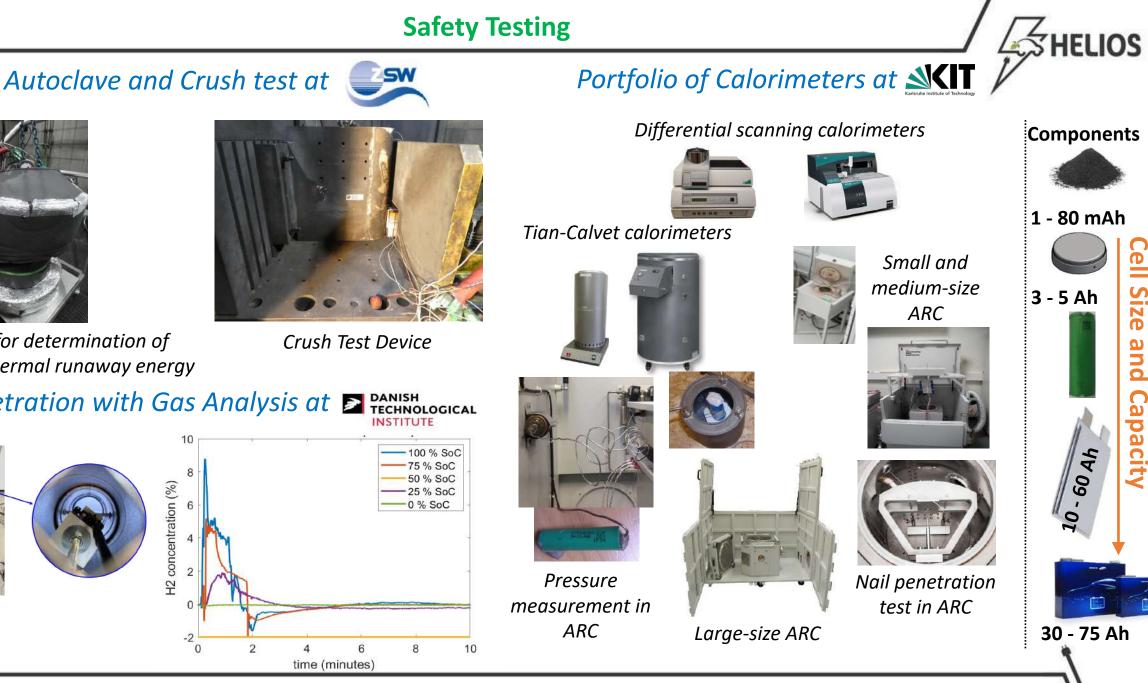
Electrochemical and Thermal Characterization

Measurements

- $\checkmark\,$ Cell heat generation and dissipation
- ✓ Surface temperature homogeneity
- ✓ Voltage/Current/Temperature
- ✓ Efficiency
- ✓ Specific heat capacity
- Thermal conductivity or thermal resistance
- ✓ Heat transfer coefficient
- ✓ Reversible and irreversible heat effect

- ✓ Calorimeters (ARC, Isothermal, Tian-Calvet)
- ✓ Thermal Imagers
- ✓ Constant Temp. Chambers
- ✓ Temperature Sensors
- ✓ Heat Flux Sensors
- ✓ Heater mats
- ✓ Transient Hot Bridge
- Battery Cyclers

<u>Conditions</u>


- ✓ Normal Operation
- ✓ Isoperibolic Operation
- ✓ Isothermal Operation
- ✓ Adiabatic Operation
- ✓ Driving Cycles

Numerical Simulations

Validation Studies at Cell Level

Multi-Scale Multi-Dimensional Model

✓ ECM✓ NTGK

Cell

Size

വ nd

نە

pacity

Autoclave for determination of released thermal runaway energy

Nail Penetration with Gas Analysis at <a>Technological

Safety Testing

<u>Measurements</u>

- ✓ Heat-Wait-Seek test to separate exothermal reactions
- ✓ Autoclave or cylinder ramp heating test for heat and gas volume release
- ✓ Standard Thermal abuse (Hot Box, External Fire)
- Standard Mechanical Abuse (Nail Penetration, Crush, Immersion, Drop, Mechanical Shock, Vibration)
- ✓ Standard Electrical Abuse (Overcharge/Overdischarge)

<u>Tools</u>

- ✓ Calorimeter (ARC), Autoclave
- ✓ Devices for standard abuse tests (Hot Box, Nail Penetration,
- Crush, External Fire, Immersion, Drop, Mechanical Shock, Vibration, Overcharge)
- ✓ Thermal Imagers
- ✓ Pressure and Heat flux sensors
- ✓ Gas sampling devices and GC/MS analysis

<u>Conditions</u>

✓ Abuse Operation

Numerical Simulations

Validation Studies at Cell Level

Multi-Scale Multi-Dimensional Model

- ✓ ECM
- ✓ NTGK

	HELIOS Battery-test data warehouse						
Purpos		istent data strue	ed. cture from all cell evelopment of algo	•	SQL database	Dash board	
	Add new dataset						
	Cell name *	Test number	Location *	Type of test *	Equipment *	Channel *	
	Start date *	Min C-rate *	Min Voltage *	Min SOC *	Min temperature *	Start cycle number *	
	End date * dd-mm-åååå	Max C-rate *	Max Voltage *	Max SOC *	Max temperature *	End cycle number *	
	Mechanical test profile		•				
	File upload * Choose file	Browse				Submit	

SHELIOS

0

User

11.01.2022

Task 4.1 Cell and battery pack testing

- Determination of the coupled electrochemical, thermal and safety data either as required input parameters for the modelling or as validation data for the simulation results
- *Elucidating ageing processes by cyclic and calendaric ageing study and post-mortem analysis*

Task 4.2 Battery modeling

- *Electric, electrochemical, thermal and aging modelling including sensor inputs*
- *Investigation of the correlation of the sensor outputs with impedance, age, state-of-charge, temperature, etc.*

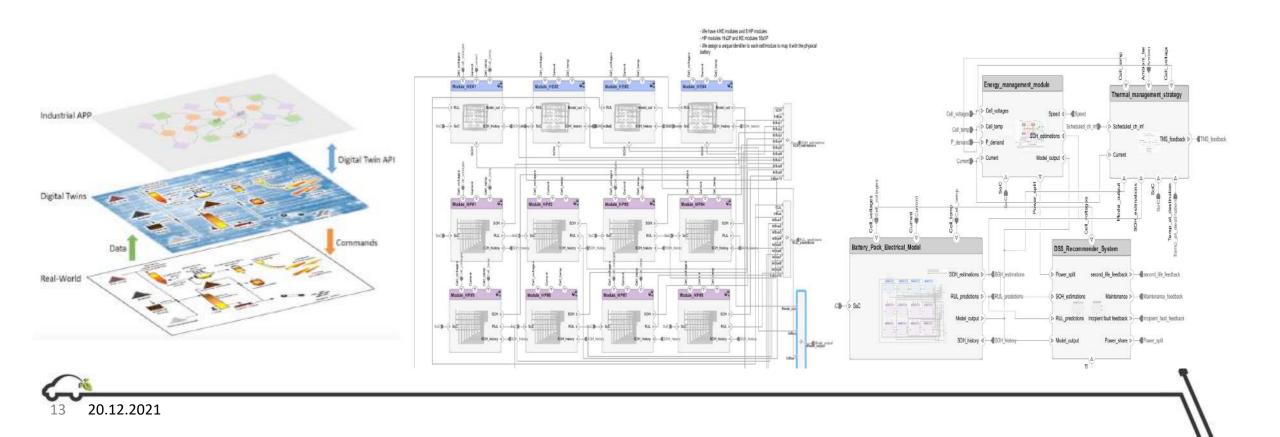
Task 4.3 State estimation

Development of State-of-Charge (SOC) and State-of-Health (SOH) estimation and prediction methods

Task 4.4 Safety management and simulation

Development of methods for advanced fault detection, fault tolerance and identification and remaining safe life estimation

Task 4.5 Complete Model for the development of the digital twin


Integration of the different sub models and methods

T4.5 Complete model for the development of the digital twin (AU)

Integrates all submodels (electric, thermal, thermal runaway and aging) and methods for state estimation, health management and RUL estimation into one complete digital twin mega-model operated on an IoT platform. It addresses the alignment and data exchange between different models and interface definition

Thank you for your kind attention

Contact:

of EV battery packs for GREEN MO

HELIOS

Dr. Carlos Ziebert

Group leader "Batteries – Calorimetry and Safety"

HELIOS

Phone: ++49/721608-22919

Towards a NEW GENERA

E-Mail: <u>Carlos.Ziebert@kit.edu</u>

