

Founded 1820 – more than 200 years ago

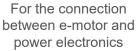
Since its foundation in 1820, Wieland has been a family-owned company with a long-term shareholder focus. Our company has evolved from an art and bell foundry to a leading global supplier of high quality copper alloy products and innovative solutions.

Broad product portfolio to meet diverse customer needs

Powerful eMobility solutions

The electrification of the drivetrain is gathering speed all over the world.

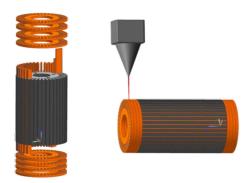
Motor Components


Wieland – as co-engineer and one stop shop partner for automotive and industry sectors – the eMobility team assists customers and looks for solutions with manufacturing and assembly of technically advanced components for EV, electrical and other applications.

Cu Rotors and **Rotor Components** For high performance and high-speed induction

motors

Precision Shunts &

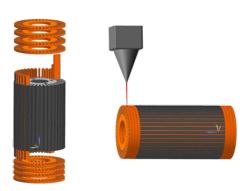

Electron Beam Welded Strip

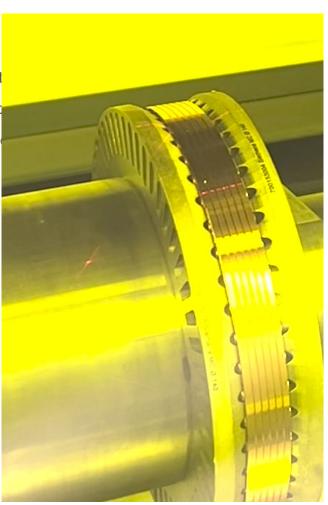
Fabricated Copper Rotors

- Higher efficiency compared to Al rotors
- Highest temperature and rotation speed possible due to usage of different alloys
- Economical and flexible low- and medium-volume production
- No pore risk due to fabricated rotor design

€ Performance

- Much better electrical and thermal conductivity of Cu compared to Al
- Usage of high strength copper alloys possible
- Reduced temperature influence of laser / ebeam welding process

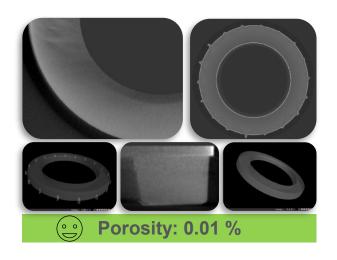

Benefits


- Different material combinations in rotor bars and end rings possible
- Very flexible rotor design and welding technology
- Reduced operating temperature due to air gap insulation

Fabricated Copper Rotors

- Higher efficiency compared to Al rot
- Highest temperature and rotation sp
- Economical and flexible low- and me
- No pore risk due to fabricated rotor

Benefits


- Different material combinations in rotor bars and end rings possible
- Very flexible rotor design and welding technology
- Reduced operating temperature due to air gap insulation

Cu & Al Die-Cast Zero Porosity Rotors (ZPR®)

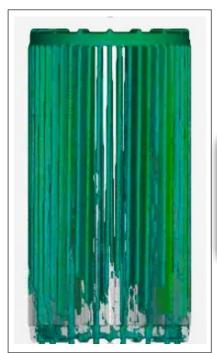
- Unique casting process (Laminar Squeeze Casting) leads to zero porosity and maximum design flexibility
- Freedom in slot design
- High electrical conductivity
- Sustainable product (100% recyclable)

Performance

- Superior mechanical characteristics due to high performance alloys
- Cutting edge quality compared to industry standard

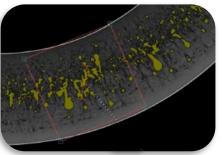
Benefits

- Free of rare earths
- Economical high-volume production due to casting process
- Maximum process stability



Comparison of Casting Technologies

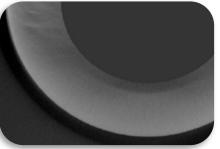
Industry Standard


Zero Porosity Rotor – ZPR®

 Area
 [mm²]
 381.366

 Porosity
 [%]
 10.1323

 Tol (max)
 [%]
 5.0000



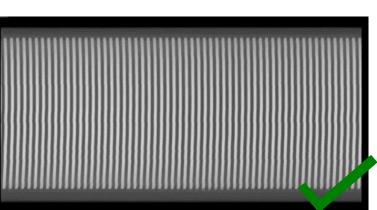
Area [mm²] 262.5746

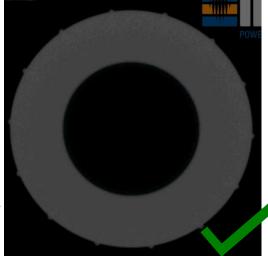
Porosity [%] 0.01

Tol (max) [%] 5.0000

ZPR Zero Porosity Rotor

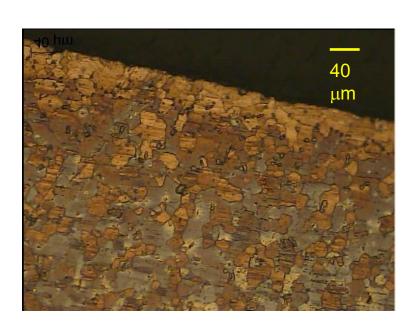
Comparison of Casting Technologies

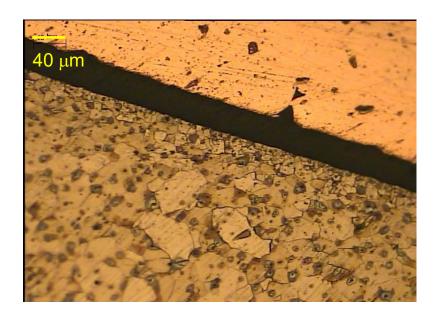



Lower short circuit ring

Slots

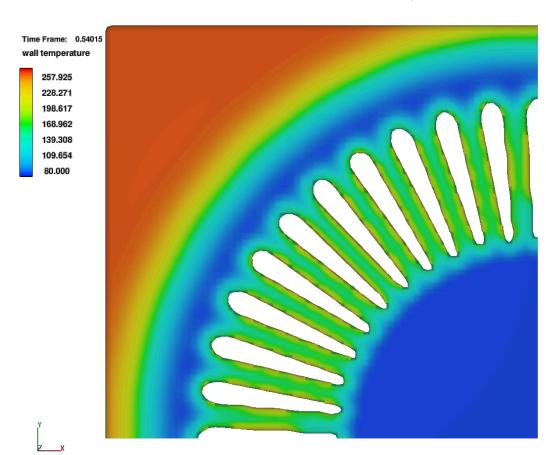
Upper short circuit ring


Electrical steel vs. temperature



Before casting

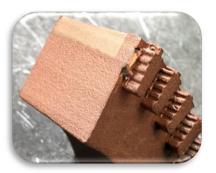
After casting



Electrical steel vs. temperature

Zero Porosity Rotor

Temperature in steel during casting <650°C

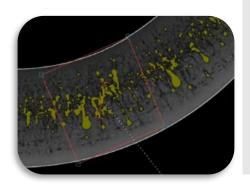

Freedom in Slot Design through Pioneering Innovation

- Ability to cast designs for high-speed concepts with enhanced rotational speed
- 2. Reinforcement of endring stability
 - Pine tree slot design
 - Mechanical reinforcement through back cutting
 - Cu-Alloys reinforcement of endring
 - Further advantages such as improvement of magnetic properties through special slot design

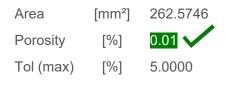
Reinforcement of Endrings

Freedom in Slot Design

Electrical conductivity


Industry Standard

Zero Porosity Rotor – ZPR®


Area [mm²] 381.366

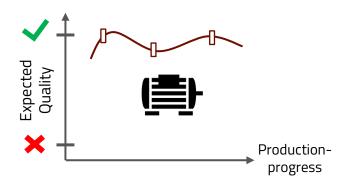
Porosity [%] 10.1323

Tol (max) [%] 5.0000

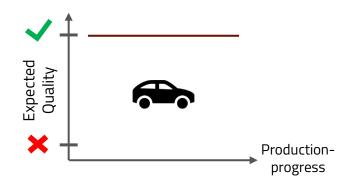
Conductivity
AL 25 - 28 MS/m
Cu < 50 MS/m

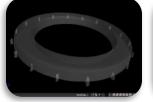
Conductivity
AL 35 MS/m
Cu >57,5 MS/m

Production stability

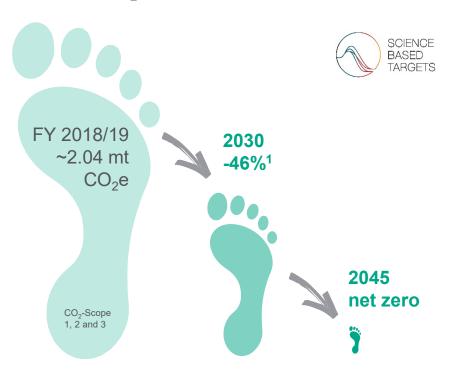


Industry Standard


Zero Porosity Rotor – ZPR®


Electric Motor Production

Automotive understanding of Quality



Wieland's ambitious decarbonization roadmap in progress

Wieland's CO₂ footprint

How we achieve net zero

- 100% electrification of all plants to phase out fossil fuels (Scope 1 = 5%)²
- 100% use of renewable energy through green electricity supply contracts and self generated electricity (Scope 2 = 27%)²
- 100% recycled content through supply of scrap from our global recycling initiative (Scope 3 = 68%)²

Capital expenditures of **more than €2 billion** for complete implementation over approx. 25 years³

¹ Compared to base year 2018/19 (2.04 million t CO₂e). Verified by Science Based Targets Initiative (SBTi) | ² Compared to fiscal year 2022/23 | ³ Regarding the current cost level, inflation not considered

wieland

Creating value for generations.

Péter Szilágyi

Managing Director

M +49 731 944 9550

peter.szilagyi@wieland.com

Wieland eTraction Systems GmbH Ziegeleiweg 20 42555 Velbert, Germany