

University of Nottingham

> Advanced Thermal Management for Future Electrified Transport

Fengyu Zhang Fengyu.zhang1@nottingham.a c.uk 16 April 2024

Midlands Industrialisation Centre

Contents

- Introduction
- Current development on thermal management
- Oil spray/impingement cooling
- Conclusion

Myself (Dr. Fengyu Zhang)

- Senior Research Fellow and Anne McLaren Fellow in Electric Drive (E-drive) Systems at University of Nottingham, with multi-background in both electrical and thermal engineering
- 18 journal papers (6 as first author), including 15 IEEE Transactions/Proceedings papers plus 9 conference papers, 1 Best Paper Award, 1 granted patent (first inventor)
- Educational background
 - PhD in Electrical Engineering, 2019, University of Nottingham, Nottingham, UK
 - Bachelor in Thermal Engineering, 2014, Huazhong University of Science and Technology, Wuhan, China

- Zero-carbon target by 2050
 - Aerospace is the most difficult transportation sector
- Electrification is the only realistic technology to decarbonise aircraft

Importance of thermal management

TECHNOLOGY INDICATORS

			2026	2030	Target 2050
	Electric motor	Power Density (kW/kg)	13	23	25
	Power electronics (Inverter)	Power Density (kW/kg)	22	40	60
	Power electronics (DC-DC)	Power Density (kW/kg)	15	40	60
	Fuel cell stack	Power Density (kW/kg)	7	9	16
	Thermal management system*	Power Density (kW/kg)	6	7	20
	Air-supply system*	Power Density (kW/kg)	1	1	3
	Electrical propulsion system	Power Density (kW/kg)	1.0-1.5	1.5-2.0	3.0-3.5

Ultimate

Importance of thermal management

- Crucial thermal management
 - Aim: To push more current for more power
 - Thermal limit & machine failure
- Losses
 - Significant losses are generated within the stator slot (winding): including DC and AC loss
 - Iron losses in both stator and rotor cores
 Magnet losses
 Magnet losses
 - Mechanical losses

Copyright © – The University of Nottingham. The use of content is only permitted with our express approval in writing.

Importance of thermal management

- Crucial thermal management
 - Poor thermal performance in the stator slot
 - Heat transfer path between the heat sources and the coolant
 - Cooling methodologies and thermal modelling tool

F. Zhang et al., "Electrical Machine Slot Thermal Condition Effects on Back-Iron Extension Thermal Benefits," in IEEE Transactions on Transportation Electrification, vol. 7, no. 4, pp. 2927-2938, Dec. 2021, doi: 10.1109/TTE.2021.3085822.

Current development on thermal management

- Coolant
 - Air
 - Water
 - Oil
 - Cryogenic fluids
- Structure improvement
 - Slot improvement
 - End-winding
 - Slot cooling channel

Semi-flooded oil cooling

Water cooled end-winding

Oil Spray and Jet Cooling of Electrical Machines

Copyright © – The University of Nottingham. The use of content is only permitted with our express approval in writing.

Oil spray and impingement cooling comparison

	Droplet	Pressure	Performance	Manufacturability/ Cost
Oil spray	10-30µm, 50µm and 150µm			
Oil impingement	0.1-0.5mm			

Research areas

- Stator winding layers number (up to 8)
- Nozzles types, numbers and locations
- Speed (up to 12000rpm)
- Rotor splash/shaft cooling
- Modelling and experimental testing

Modelling and experimental testing

- Modelling
 - Heat transfer coefficient determination
 - Full machine simulation
- Experimental testing
 - Test rig design and testing

Thermal network on spray cooling

F. Zhang et al., "Slot Number Thermal Effects on Electrical Machines," in IEEE Transactions on Energy Conversion, vol. 36, no. 1, pp. 23-35, March 2021, doi: 10.1109/TEC.2020.3008219.

	Slot	End-winding	Slot simulation
Traditionally cooled round windings	Stot liner Impregnation centre Air hubble	Assumed uniform for all the slots	Half slot
Oil spraying cooled hairpin windings		Heat transfer coefficient and convection area (following slides)	Full machine

F. Zhang et al., "A Thermal Modeling Approach and Experimental Validation for an Oil Spray-Cooled Hairpin Winding Machine," in IEEE Transactions on Transportation Electrification, vol. 7, no. 4, pp. 2914-2926, Dec. 2021, doi: 10.1109/TTE.2021.3067601. 13

End-winding heat transfer coefficient determination

- $q = \frac{Q}{2 \times N}$
- #1: $h_{ave} = q / [A_{end}(T_{ave} T_{oil})]$
- #2: $h_{ave1} = q/[A_{end}(\frac{\sum T_i}{12} T_{oil})]$
- $#3:h_{#slot} = q/[A_{end}(T_{#slot} T_{oil})]$

average h		Slot#	Total slots
h _{ave1} ,	i	1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67	12
h _{ave2} ,	j	2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36, 38, 42, 44, 48, 50, 54, 56, 60, 62, 66, 68, 72	24
h _{ave3}	М	3, 5, 9, 11, 15, 17, 21, 23, 27, 29, 33, 35, 39, 41, 45, 47, 51, 53, 57, 59, 63, 65, 69, 71	24
h _{ave4}	Ν	4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70	12

*Nozzle type A, 12 nozzles as example

'q' is the corresponding loss of a single conductor dissipated to the sprayed-oil, 'Q' is the total heat loss dissipated to the sprayed-oil, 'N' is the slot number; ' T_{ave} ' and ' T_{oil} ' are average conductor end-winding temperature and sprayed-oil temperature, respectively.

End-winding effective convection area

- Full surface area $s_{end} = (2a + 2b) \times l, l = H + 3c$
- #1: $s_1 = s_{end}$
- #2: $s_2 = \beta_0 \times s_{end}$, $\beta_0 = (a + 2b)/(2a + 2b)$ constant
- #3: $s_3 = \beta \times s_{end}$, $\beta = \frac{\beta_0(T_{ave} T_{oil})}{T_{\#slot} T_{oil}}$ dependent on single slot

End-winding methodology (#i, #ii, #iii, #iv)

End-winding methodology	h	A_{conv}	
#i	h_{ave} for all end-winding	$A_{conv} = A_1 = (2a + 2b) \times l$	
#ii	h _{ave1} , h _{ave2,} h _{ave3,} h _{ave4}	$A_{conv} = A_2$ = $\beta_0 \times (2a + 2b) \times l$	
#iii		$A = A_{r}$	
#iv	Single conductor local $h_{\#_{slot}}$	$= \beta \times (2a + 2b) \times l$	

a', b' are the conductor width and depth respectively, c' is the distance between the centers of two adjacent slots, while H' is the end-winding height.

Тетр	Thermal network with end-winding methodology#				Measured
	i	ii	iii	iv	Medsureu
Ave (°C)	57.08 (1.73%)	58.97 (12.98%)	55.59 (-7.15%)	56.19 (-3.57%)	56.79
Peak (°C)	57.61 (-36.81%)	59.71 (-29.28%)	59.12 (-31.4%)	65.98 (-6.78%)	67.87

- Thermal improvement
- Oil spray and impingement cooled machines
 - Modelling and experimental testing

University of Nottingham UK | CHINA | MALAYSIA

Thank you!

Any questions?