

- Sandie B. Nielsen (sbn@dti.dk)
 - Danish Technological Institute (http://dti.dk)
- Electrical Engineer Motor & Drives specialist, programmer
- Employments:
 - 1996-2001 ABB (Drives specialist)
 - 2001-2002 DEFU (Project manager, energy optimization)
 - 2002- present Danish Technological Institute
 - Business Manager & Head of ISO 17025 accredited testing laboratories
 - Frequency converters, Motors, Pumps, Fans etc. (Range hoods, AHU-Units)
 - Technical consultant for Danish Energy Agency
 - Ecodesign matters on frequency converters, motors, pumps & fans
 - IEC standardization member in several working groups
 - Frequency converters & motors (WG12, WG18, WG28 & WG31)
 - External trainer at Grundfos A/S (pumps and pump applications)
 - Development of data acquisition software and multiple tools in LabVIEW, MST-Tool
 - On-going member & task leader in EMSA since 2009

Sandie B. Nielsen, anno 2023

- Introduction to MST-Tool
 - Basic functions
 - Input screens
 - Main Windows
- Some features:
 - Dynamic duty point selection
 - "On the fly" language select
 - Automated slip calculation
 - Eco-design evaluation water pumps, fans

- Standard features:
 - Motor/Drive models:
 - PM and SynRM loss models
 - IEC reference and typical losses
 - AMCA Models (ANSI/AMCA 207-17)
 - 3 x power transmissions
 - 5 x sets of motor/drive losses
 - Application calculator
 - Pump & Fan
 - Hydraulic machines
 - Air compressors
 - Cooling compressors
- A real-life example

• Introduction:

"Motor Systems Tool is an impartial calculator for complete motor systems that utilizes "neutral" models of standardized components, to determine the efficiency at any given duty point on a complete motor system"

It was firstly introduced at EEMODS'11 in Washington D.C. and has since appeared at several Motor Summit's & EEMODS' conferences as well as at multiple workshops

Today, more than 12 years later we have registered more than 4.500 unique downloads!

Basic function:

Selection of three essential components:

Load Transmission Motor/Drive unit

Load profile:

Transmission:

AMCA models for transmission

Motor/Drive unit selection:

Asynchronous motor – 5.5 kW from nameplate

Motor/Drive unit selection:

Asynchronous motor – 5.5 kW from IEC 60034-30-1 Tables

Motor/Drive unit selection:

Direct On-line

Soft starter

Frequency Converter

Main window:

Dynamic duty point selection

Dynamic language selection, switch "On the fly"

Automatic slip calculator (D.O.L. machines)

Main window:

Annual cost – on the fly

Save duty points – Before situation

Save duty points – After situation

Instant savings calculated

Evaluation for European ecodesign, Fans

Evaluation for European ecodesign, Fans

Evaluation for European ecodesign, Pumps

Evaluation for European ecodesign, Pumps

- Motor/Drive unit selection:
 - Input directly from the motor nameplate

Asynchronous motor – 5.5 kW from nameplate

- Motor/Drive unit selection:
 - Input directly from the motor nameplate

Warning based on calculated efficiency

- Motor/Drive unit selection:
 - Input directly from the motor nameplate

Asynchronous motor – 5.5 kW from nameplate

- Motor/Drive unit selection:
 - Permanent magnet &
 Synchronous reluctance motors
 Models from Ghent University

- Models validated in:
 - Shaft power
 - 0.25 250 kW
 - Nominal speeds
 - 1.000, 1.500 & 3.000 rpm

Motor & Drive selection

- Motor/Drive unit selection:
 - Loss models from IEC 61800-9-2
 - Annex A, Reference losses for Power Drive System (PDS)
 - 0.12 1.000 kW, 4 pole machines

- Annex D, "Typical" losses when driven by VSD
 - 0.12 1.000 kW, 2&4 pole machines, IE2

- Motor/Drive unit selection:
 - Loss models from IEC 61800-9-2
 - Annex A, Reference losses for Power Drive System (PDS)

Motor & Drive selection

Asynch. Motor PM - Motor SynRM - Motor IEC 61800-9-2 AMCA Models

IEC 61800-9-2

Select IEC Model:

- Motor/Drive unit selection:
 - Loss models from AMCA 207-17
 - AMCA models include:
 - EPCA nominal motors 60Hz (Hp)
 - EPCA nominal motors 60Hz (kW)
 - IEC 60034-30-1, 50Hz tables
 - IEC 60034-30-1, 60Hz tables
 - GB 18613 2012
 - AMCA models also include:
 - 3 variants of belts

Motor & Drive selection

Asynch. Motor PM - Motor SynRM - Motor IEC 61800-9-2 AMCA Models

-0,02594

EPCA Nom Eta - HP [60 Hz]

ANSI/AMCA

Standard 207-17

AMCA EPCA ODP - 7,50 HP

Selection in Range?

Ok

An example with a pump application

- An asynchronous motor with known nameplate
- No transmission
- Measurements available:
 - Flow, head & input power

	P1								
Driven application	(Pump, Fan, Compr., Other)	Pump	Pump	Pump	Pump	Pump	Pump	Pump	Pump
Control method	(throttle/valve; on/off; hydraulic; VSD)	multiple valves (manual+control	multiple valves (control)	valve	none	multiple valves (control)	multiple valves (control)	valve	none
Annual running hours	(hours/year)	4250	4250	4250	6570	4250	8500	8500	8000
Duration curve *)	(PID; bell curve; 80%)	60-80%	?	i0% control valve	100%	bell	bell	90%	100%
ATEX	(y/n)	n	n	n	n	n	n	n Ex nA II T3	n Ex nA II T3
Redundant	(y/n)	1002	1002	1002	3004	1002	n	n	n
Motor Power	(nameplate in kW)	90	45	110	315	37	22	11	160
Motor nominal speed	(rpm)	2970	2955	2900	1500	2950	2931	1460	1486
Motor current	(A)	92	48	112	328	39,4	22,9	17,1	282
Motor cosphi		0,91 (full load)	0,89 (full load)	0,90 (full load)	0,87(full load)	0,89(full load)	0,91(full load)),84 (full load)),86 (full load)
		0,91	0,89	0,9	0,87	0,89	0,91	0,84	0,86
Motor efficiency	(%)	95	93,5	94,8	96,7	92,8	92,1	88,3	96
Motor age [years, or year of built]	(years or year of built)	1998?	1998?	1998?	98/04?	1998?	2004?	1993?	2004?
Rewoundings	(y/n)								
Motor Voltage	(400V, 500V, 690V, other)	660V	660V	660V	660V	660V	660V	500V	600V
Hot spot for improvement	(y/n, e.g. Maintenance)	running at low flow							
Number of similar applications	(#)	2 (=redundancy)	2 (=redundancy)	2 (=redundancy)	4 (=redundancy)	2 (=redundancy)	1	1	1

	P1										
Driven application	(Pump, Fan, Compr., Other)	Pump		≥ Motor	& Drive selection	_				× Pump	
Control method	(throttle/valve; on/off; hydraulic; VSD)	multiple valves (manual+control	multiple	Async	ch. Motor PM - Motor	SynRM - Motor	IEC 61800-9-2 AM	CA Models		none	
Annual running hours	(hours/year)	4250)	Ir	nput nameplate data:			Motor Size [kW]:	IEC	8000	
Duration curve *)	(PID; bell curve; 80%)	60-80%			Nominal Shaft Power:	90 kW	Select IEC	5,5 \(\tag{1}\)	IEC 60034-30-1	100%	
ATEX	(y/n)	n			Nominal Voltage:	92,0 Ampere	Std. motor	IE1 motor No. of Poles:		n x nA II T3	
Redundant	(y/n)	1002			Nominal Cos phi:	0,91 -		4 poles 🗸		n	
Motor Power	(nameplate in kW)	90)		Nominal Frequency:	50 Hz		Calculated	E1 F2/3	160	
Motor nominal speed	(rpm)	2970)		Nominal Speed:	2970 rpm		Torque [Nm]: 289,4	Eta [%]	1486	
Motor current	(A)	92)					Motor -	90,00 kW	282	
Motor cosphi		0,91 (full load)	0,89 (f							(full load)	
		0,91				Ok					
Motor efficiency	(%)	95							Ok	96	
Motor age [years, or year of built]	(years or year of built)	1998?		10001	1000:	00/0 1	. 1000	2007:	1000:	2004?	
Rewoundings	(y/n)										
Motor Voltage	(400V, 500V, 690V, other)	660V		660V	660V	660\	660	V 660V	500V	600V	
Hot spot for improvement	(y/n, e.g. Maintenance)	running at low flow									
Number of similar applications	(#)	2 (=redundancy)	2 (=redur	idancy)	2 (=redundancy)	4 (=redundancy) 2 (=redundanc	y) 1	1	1	

Inputs in MST-Tool:

Another example, 12 points in application calculator

- A standard IE2 asynchronous motor with VSD
- No transmission
- Fan application with detailed curves available

- Application calculator
 - Input of motor & VSD:

Application calculator:

- Application calculator:
 - Includes standardized models for:
 - Pump, Fan, Hydraulic pump Air,- & Cooling compressors

Fan input page

Pump input page

- Application calculator:
 - Includes standardized models for:
 - Pump, Fan, Hydraulic pump Air,- & Cooling compressors

For the "opposite direction" of calculation, both pump & fan have the possibility to input the pump/fan curve for automatic calculation of duty point.

Fan example:

- Application calculator:
 - Includes standardized models for:
 - Pump, Fan, Hydraulic pump Air,- & Cooling compressors

For the "opposite direction" of calculation, both pump & fan have the possibility to input the pump/fan curve for automatic calculation of duty point.

Definition of 12 representative duty points:

Application calculator:

- Application calculator:
 - Includes standardized models for:
 - Pump, Fan, Hydraulic pump Air,- & Cooling compressors

For the "opposite direction" of calculation, both pump & fan have the possibility to input the pump/fan curve for automatic calculation of duty point.

Specific duty point (8 m3/s, 900 pa):

Specific duty point (8 m3/s, 900 pa):

- Application calculator:
 - Complete system calculated:

- The Motor Systems Tool, MST-Tool
 - A dynamic tool under continuous development
 - Published ecodesign regulation on fans
 - Upcoming ecodesign regulation on pumps
 - Interpolation / extrapolation models from IEC 60034-2-3:2024
 - A part of a family of tools calculating:
 - Air compressors, Vacuum systems, Hydraulic systems and soon Ventilation systems
- Find 4E EMSA Tools at: https://www.iea-4e.org/emsa/
 - Updated versions of tools soon to be released!
 - Including updated guide, examples etc.
- Hotline (Hotmail) for MST: mst@iea-4e.org

Sign up for our newsletter

Thank you for listening

Sandie B. Nielsen
Representing Denmark in 4E EMSA
Danish Technological Institute
sbn@dti.dk

