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Electrical Conductors

HVDC Submarine Cable

Solar Cable
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Advanced Electrical Conductors

NANOCARBON-BASED:
nanocarbon matrix enhanced
with dopants or intercalants

METAL-NANOCARBON:
metal matrix enhanced with
nanocarbons
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Room-Temperature Electrical Conductors

IACS [%] Thermal conductivity Strength  Densi

[WmK ] [GPa]  [gem ™
Individual CNT or 33-172 >3000 20-100 1.4 $SSSS
International Annealed Copper Standard graphene )
(IACS), which has an electrical Doped CNT fiber” 15 625 3 1.5 $9SSS
e, i
conductivity of 58.1 MS/m at 20°C Doped graphens fiberdd 1575 5 _ $5S
Doped carbon fiber®™ 24 I >1000 1 2.5 $$$
Cu-CNT 1471 ? e - 5.2
., [50] o o
nanocomposnte —
i 1 I'a
Ultraconductive Mn71- - — 8.9
[47) ol
copper
8 6 <a ’ C 101 390 0.3 8.9
Graphite Graphene Carbon nanotube i :
(8] Aluminum 62 200 0.1 2.7 $
Silver 105 400 0.1 10.5 $S

“An electrical conductivity of 38% IACS has been r]efobrted for a potassium-doped
(measured in inert atmospheres) graggmene ﬁber;[ " P Exhibits a better electrical
conductivity than copper above 80 °C. l
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Copper vs. Aluminium

« Strenath, strength per weight

« Conductivity (o), c per weight, o per volume, ¢ per cost, elevated temperature o

« Workability and handling (bendability)

« Corrosion resistance

« Creep

» Thermal expansion

« Ampacity (current carrying capacity)

« Cost

aluminium-busbar.com

» Major applications

shanpowercable.com
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Copper Alloys
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Coppers and Copper Alloys for Electrical and Electronic Applications T

Low=-alloyed Coppers / Copper Alloys

Contacts nnectors, electromagnet
;,‘H acts, connectors, electromagnetic R.":‘.h"*‘:""’]» ar), commutators, connectors,
shielding, fuse clips, le rames, ngs

= X . motor rotors crmin S
switch parts, terminals, jing electrodes » otors, t "

X S Cu-C | CuZn3SMn2AlFe1-C
| ¢ 02Be { ind

.A( . J_‘P . ! ‘f ',' E_, CuZn33Pb2-C | CuZnisPbiAl-(

CuCoINi1Be | CuNi3S ast t

Automotive wir

breaker con con s, grooved

contact wires, lead frames, springs, switches,

telecom cable, terminals, wires Contacts, connectors, pins, switches,

= i switchgear, terminais, welding tips

CuSn0.15 | CuSn0.2 | CuSn0.5 | CuMg0.2

CuMg0.5 | CuCri1Zr | CuFePMg Zi s CuleP | CuSP | CuZn39Pb3
CuFe0, 1P | CuFe2P | CuCo1Ni1Be M bige

CuCo2Be | CuNi2Be | CuNi1SI

CuNi25i | CuFePCoSn

Alternator/generator windings, circuit
breakers, commutator bars/segments Cont
ke

contacts, grooved contact wires, lead frames, -Ontacs

. connectors, earthing clamps,
welding electrodes/wheels

amp caps, terminals

R —an ; ek — CuZn5 | CuZnt0 | CuZn2( “uZn
CuCr1Zr | CuZr | CuSn0.15Te | CuAg0.04(0F) : . = Cue W
CuAg0.04 | CuAgD. 1X0F) | CuAg0.10 | CuFe0. 1P

High Conductivity Coppers

vacuum ca

or welded in reducing

phere

ppor-conducthity-matere Copper Development
Cu Association
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Carbonaceous Conductors

Ballione Pitch CNT Graphene
 CNT
* SW-CNT
* m-CNT
e s-CNT
 DW-CNT
’ FW-CNT . Oxidization
* Graphene .
e CVD-Gr b. Pyrolyéléand
graphitization
* rGO
* Carbon Fiber
* Pan-based
* Pitch-based
Carbon Fibers CNT fibers Graphene fibers
The University of Texas at Austin [39]
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Carbon Nanotubes (CNT)

Fe .

Al,O; — Multi-walled

si0, =5 Carbon Nanotube

Si—™

CNT nucleation and growth

@ The University of Texas at Austin
Mechanical Engineering

Cockrell School of Engineering




CNT: Synthesis and Purification

..........................................

m CNT length

B CNT orientation

B Inter-tube particle
impurities

S-K

Fe-K

Winding rate

High-temperature zone length

B

Khanbolouki and Tehrani, Carbon 168, 2020, 710-718.
Materials & Design 203 (2021): 109557.
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Graphene: Quality vs. Quantity and Price

Graphite Graphite Oxide

Reduced Graphene Oxide Graphene Oxide

CH, — C (Graphene)+2H,

— A= Gy e ==

( Growt

(.I.) The Umu.rsntv of Texas at Austin https://www.acsmaterial.com/blog-detail/cvd-graphene_html
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Commercial CNT Yarns

Dominant CNT Raman

CNT type length [um] Ic/lo (quality)
Lintec: dry spun from a CNT forest!® MWCNT <500 1
Huntsman: dry spun from FC-CvDP* FWCNT <2000 2-5
DexMat: wet spun from a CNT-acid solution!®” DWCNT <20 >50

Tensile Electrical conductivity Density [g cm ]

strength [GPa] [MSm™]

Lintec: dry spun from a CNT forest!*! <1 0.1 0.5
Huntsman: dry spun from FC-CvDP* 1 0.3-2 0.5-0.9
DexMat: wet spun from a CNT-acid solution®®” 0.4-2.8 3-10 0.8-1.6
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Graphene Fibers

© |Alignment in

I
channel :
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Adv. Mater. 2020, 32, €1902664.
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R&D of Graphene Fibers

* Blending small and large GO sheets + Calcium doping

* Strength: 1080 MPa .
+ First work with wet-spinning « Modulus: 135 GPa SpOIIONERIGONS
* Strength: 140 MPa « Electrical conductivity: 2210 S cm-!
* Modulus: 7.7 GPa « Thermal conductivity: 1290 W m-! K-
+ Electrical conductivity: 250 S cm-!

v s 2019
< 2016

®
g v 2015

« Giant GO sheets as building blocks * Defect engineering management * Microfluidic design

« Strength: 501.5 MPa + Strength: 2200 MPa - Strength: 1900 MPa

* Modulus: 11.2 GPa * Modulus: 400 GPa * Modulus: 309 GPa

« Ag nanowires doping * Chemical doping « Electrical conductivity: 10400 S cm-!
» Electrical conductivity: 900 S cm-! + Electrical conductivity: 220000 S cm-! * Thermal conductivity: 1575 W m-! K

Adv. Mater. 2020, 32, e1902664.
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Conduction Mechanisms

Conductivity = charge carrier density X charge carrier mobility

Metals ~1028 /m3 30-50 cm?/ (V-s)

8 70K 298 K

g ) ¢

Q v' Impurities/dislocation § v* Grain boundary 1 ¥ Phonon scattering

g v Grain boundary 1 v Impurities/dislocation 1 v* Grain boundary

oY v Phonon scattering : v" Phonon scattering : v" Impurities/dislocation

Temperature

Adv. Eng. Mater. 2018, 20, 1700503
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Single Crystal Conductors

60
IACS Conductivity at 293K
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Conduction Mechanisms

Conductivity = charge carrier density X charge carrier mobility

Nanocarbons ~1014 /m3 100,000-200,000cm?/ (V-s)
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Electronically Hybrid Conductor

Conductivity = charge carrier density X charge carrier mobility
= == ==

Metals I ~1028 ' /m3 50-50 cm?/ (V-s)

Nanocarbons ~10% /m? |100 000-200,000cm?/ (V- s) |

>
@
DOS

1 1 I 1 | 1 1 L
-20 -15 -10 -5 0 5 10
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Composite Properties

P A
Py :
f— Electroplated Cu ¢
Scrolled Graphene— (& Ae2)
(GFs)...." o' <L
0( . »
Q B "
wt e L L/
B o
- . " - \l"”‘
’ o - 5 \0
o
Pa S i
P
o Volume fraction 100%

[91]
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Nanocomposites: Synergistic Properties

: .\& 96-98 wt% Cu

L \ ™ 4
B e
Q 6x10°

Full fill 6

Measured
Freestanding
TEST WIRE Cu wire
& 5x10%
5
1 Vacuum chamber
34x1 04 P~ 10'Pa
®)
O
&)

3x1 04 MWCNT wire

- 4 seeded
2x10% - * * Partial fill
= 1 No fill

100 - 1X104 _'_‘Qﬂmjhﬂpm) v T v T v T
40 60 80 100
lntemal Cu filling (Wt%)

CNTs in continuous Cu matrix
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Nanocomposites: Synergistic Properties

4 20
15.0+2.9
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Electromagnetic Interference (EMI) Shielding
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Modeling Ampacity
PN

* Heat storage + Heat dissipation = Heat generation <| DissipationF

« All these terms are temperature dependent

0 oT (x) Conducti
a("xo(T(x)) 4= ) onductior
—h(T)-P-(T(x) —Tp) Convectior
—€-0-P-(TX)*-Ty)
Radiation 100
e [ 380 -
.|_‘Z . p('p(x)) Generatior g:mm
:] 320

Transient solution 300
50

100
: N 200 () 5
% The University of Texas at Austin time (sec) E =
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Numerical Simulation of Ampacity in advanced electrical

conductors
10
wt. vol. wt. vol. wt. vol.
1004 &
A
104 X >
8 'e) 8 ” OoCu
- - CNT (d )
—~ 4 o - ry-spun
> & O o
5 10 - - O o é 2 X CNT (wet-spun)
g - r oUCC
“:.=: . + X 5 A Intercalated CF
&) 1 - +GF
{ — = _ OCu-C (theoretical)
~ <
-+.
S mm Scm 0.5m
0.1 0.1 0.1

wt. — Comparison based on equivalent weight conductors
vol. — Comparison based on equivalent volume conductors

o Comparison of different conductor materials based on equivalent weight and
equivalent volume
o Calculated currents (A) required to raise the temperature of the conductor

The University of Texas at Austin (lengths of 5 mm, 5 cm and 0.5 m ) to a maximum temperature of 150°C
Mechanical Engineering

Tehrani, Unpublished
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Measurement Errors

RA A dp\ 2
p=— — e 2 e
s eG4 ()

wires/fibers:  Ofp = (L2 /| RM)

a 2
e2+(a—’;)e2

Pointy Anvil

A L L . L L 14‘1‘ mm

A A Y 10*10 mm
6*16)mm, Annealed Cu, t = 43 um\+(11202:tji§)

(1
T

~125um

44 mm

Poenty Anvil Micrometer
Density Approach

\ Q o P Flat Anvil Micrometer
12’12 mm, Annealed Cu, t = 43 u (112.1241.34) % 14*14 mm
D N\
2 40°10 mm ~50um
Y o
ﬁs"a)mm. Annealed Cu, t = 43 um/ (113.2841.31) 5 44 mm
7777777777777 .
%’ﬁmm, Annealed Cu, t = 43 ur/n}% 4(112.9841.34) bt
D727 7 1010 mm ~7um
Z 44
0'10mm,BareCu,t=47u (100.82-1.09) T e Tl DS D T
< = 5 p s z 0 40 80 120 160
0 20 40 60 8 100 120 140 160 IACS Conductivity (%)
IACS Conductivity (%)
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Numbers

#number of patents since 2012 on
nanocarbon—metal composites

mentioning o~
electrical conductivity as a
charactetistic = Graphene-Copper Composite
@ 5 CNT-Copper Composite
* 301n2012 S 60
* 35in2013 B
* 421n2014 < 40
« 711n2015 :
* 83in2016 = 20
. e R O L S

most of these patents are from China.
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Prospects

1
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Summary

- 1.6 g/cc
Individual — 2
CNT . Individual
100 100 | CNT
E = ' Maximum current rating
%) = "
2 0} L 10 “: B
e o E ]
3 5 107 4 O
A + 3 e
o O -
E s 3| -
c 1 CNT-Cu wires c 1| 10" o
e] o] X —
o o : CNT-Cu wi ’ . .
y— 8 : -Cu wires
S £ | 10° <
o Doped CNT wires 8 ! _
8 Q Doped CNT wires
> )
w 01 L 01 L
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Summary

» Electrical Conductivity

* Mechanical properties

* Thermal conductivity

» Temperature Coefficient of Resistance (TCR)
* Thermal expansion

*  Emissivity

* Ampacity

* EMI Shielding
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watching!
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