The 'magical moment' is now: Decarbonise heat in the EU

May 26, 2021 15h00 – 16h00

Leonardo ENERGY Webinar Channel j.mp/leonardotube

6th Webinar of the Electrification Academy

Georg Thomaßen, Agora Energiewende

Jan Rosenow, RAP

Electrifying heat would push Europe significantly closer to its decarbonisation goals. And there is no time to wait: The heating and cooling sector currently accounts for 50% of the EU's final energy consumption. Luckily, we don't need to wait for a 'magical moment' to deploy solutions such as heat pumps. Even with today's power mix, switching to electrified heat would markedly reduce emissions. Substantially increasing the use of renewable energy sources at the same time is pivotal for cementing the effectiveness of this solution.

May 2021

Electrification of heating in Europe – challenges and opportunities

Electrification Academy

Dr Jan Rosenow

The Regulatory Assistance Project (RAP)®

Rue de la Science 23 B-1040 Brussels Belgium +44 7722 343137 jrosenow@raponline.org raponline.org

BBC	hotel	ŧ	Home	News	Sport	Weather	iPlayer	
NEW	′S							
Home Coror	navirus Brexit UK W	/orld I	Business P	olitics Tech	Science	Health Fam	ilv & Educat	io

Science & Environment

Climate change: Ban new gas boilers from 2025 to reach net-zero

By Matt McGrath Environment correspondent

③ 15 hours ago ☐ ☐ Comments

Large increase in number of heat pumps expected

Source: IEA 2021

Heating emits more carbon than all coal power plants in Europe

By 2030:

60% less carbon emissions from buildings than in 2015

At least 10x more energy savings than current rate

by 2026 4.6% of homes switch to low carbon heating every year

How big a problem is peak heat?

Source: <u>https://blogs.exeter.ac.uk/energy/2017/07/10/is-the-peak-heat-</u>issue-all-its-made-out-to-be/

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, nonpartisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Dr Jan Rosenow Director of European Programmes The Regulatory Assistance Project (RAP)® Rue de la Science 23 B-1040 Brussels Belgium +44 7722 343137 jrosenow@raponline.org raponline.org I janrosenow.com

The decarbonization of EU heating through electrification

RAP Electrification academy

Georg Thomaßen 26.05.2021

Main messages

Content

1.	Current state of play in the EU
2.	Generation of heat pump profiles and electrification scenarios
3.	Results

Current fuel mix in space heating: The share of NetZero-ready heating technologies ranges from 10% up to 95% across the Member States.

In most Member States, heat pumps (blue) produce less emissions per kWh heat than a gas boiler (yellow).

But only 6 countries aim at market shares beyond 20% in 2030

Operating costs appear to be a major driver for heat pump deployment, although cost parity alone is not sufficient.

Generation of heat pump profiles and electrification scenarios

Method: Generating heat-pump profiles from temperature time series and electrical load

- \rightarrow Determine the point at which households start heating.
- \rightarrow Calculate heating-degree-hours time series.
- → Disaggregation model based on heating-degree-hour, temperature dependent time series for COP and a rescaling function.
- → Result is compliant with national statistics on electricity demand.

Heat sector scenarios

- → ELXX scenarios describe a gradual replacement of decentralized fossil heating technologies by heat pumps. XX describes the share of fossils being replaced in percent.
- → EL100BIO scenario assumes additionally a replacement of biomass fueled boilers.
- → EL100ALL describes a scenario where, additionally, district heating is replaced by heat pumps, and can be seen as the maximum degree of electrification theoretically possible.
- → Derived heat pump profiles are scaled to match the resulting numbers for annual consumption.

Projection trend 2030:

AT	BE	BG	CZ	DE	DK	EE	EL	ES	FI	FR	HR	HU	IE	IT	LT	LU	LV	NL	PL	PT	RO	SE	SI	SK	UK
EL20	EL40	EL20	EL20	EL20	EL20	EL20	EL40	EL20	EL80	EL20	EL100BIO	EL40	EL20	EL20											

Scope of the analysis

- → Is there enough firm capacity to safeguard the demand increase? Matching demand with firm capacity levels in the EU Member States.
- → This is a very conservative indicator, as variable renewables and interconnectors can contribute to satisfying additional heat pump demand (correlation between wind production and heat demand is proven in several studies). Exceeding the firm capacity level therefore **does not automatically mean load shedding**.

\rightarrow What is the impact on emissions?

- → Assumption: Additional demand is satisfied by gas-fired power plant (no additional transformation in the power sector).
- → Sensitivity: What is the impact if heat pump deployment is accompanied by additional renewable deployment?

Number of hours during which demand exceeds the firm capacity level: Many MS are well equipped for heat pump deployment. Some, however, need to monitor deployment to make sure that supply security is maintained.

BLS	435	20	0	0	0	0	0	0	0	1416	17	0	0	0	0	0	243	0	0	0	0	34	79	0	852			
EL20	702	266	0	0	7	0	0	0	0	1279	46	0	286	0	0	0	399	0	0	0	0	13	115	3	1222		4	000
EL40	941	1000	0	0	90	0	0	0	0	1177	87	0	714	0	1	0	609	0	39	0	0	5	190	21	1606		3	3200
EL60	1171	1838	0	0	338	0	0	0	0	1069	142	3	1257	0	23	0	736	10	170	0	0	0	227	134	2062		2	2400
EL80	1426	2588	0	2	886	0	0	0	0	977	234	7	1748	0	51	0	1019	49	319	0	0	0	268	309	2545	_		
EL100	1684	3195	0	7	1516	0	0	0	0	872	356	28	2205	0	123	0	1161	149	613	0	0	0	357	512	2962		1	600
EL100BIO	2597	3351	0	72	1899	0	49	5	0	1671	675	1009	3088	0	305	135	3249	208	1026	0	141	0	1473	566	3102	_	8	300
EL100ALL	3682	3415	0	258	2375	586	461	43	0	3468	812	1190	3365	0	392	639	4717	274	2230	0	352	213	2002	1250	3154			
	AT	BE	BG	CZ	DE	DK	EE	EL	ES	FI	FR	HR	HU	IE	IT	LT	LV	NL	PL	PT	RO	SE	SI	SK	UK		0	1

Sensitivity: What happens if we shift demand based on the thermal inertia of the buildings stock

- → Thermal inertia of buildings rectifies shifting 6% of peak demand to off peak hours
- ightarrow Assumption: Temperature deviation of up to 0.5 °C is acceptable to inhabitants
- → (Kensby et al., 2015): 0.1 kWh/m2 can be stored in buildings

Load shifting increases the number of MS with no hours above the firm capacities in the EL100 scenario from 10 to 12

BLS_DR	241	0	0	0	0	0	0	0	0	1349	0	0	0	0	0	0	223	0	0	0	0	0	5	0	741		
EL20_DR	522	112	0	0	0	0	0	0	0	1188	0	0	195	0	0	0	306	0	0	0	0	0	23	0	1179	4	1000
EL40_DR	804	876	0	0	37	0	0	0	0	1067	7	0	665	0	0	0	483	0	0	0	0	0	96	0	1545	3	3200
EL60_DR	1035	1775	0	0	201	0	0	0	0	945	25	0	1175	0	0	0	582	0	142	0	0	0	130	65	1976	1	2400
EL80_DR	1321	2549	0	0	783	0	0	0	0	852	89	0	1712	0	11	0	841	2	264	0	0	0	166	233	2465		
EL100_DR	1600	3256	0	0	1475	0	0	0	0	744	219	0	2214	0	65	0	993	46	526	0	0	0	237	450	2931	1	1600
EL100BIO_DR	2584	3435	0	35	1865	0	8	0	0	1640	569	961	3079	0	191	135	3320	92	903	0	107	0	1378	492	3097	٤	800
EL100ALL_DR	3748	3511	0	195	2341	456	446	0	0	3547	735	1151	3386	0	259	561	4688	145	2227	0	312	207	1992	1189	3158		~
	AT	BE	BG	CZ	DE	DK	EE	EL	ES	FI	FR	HR	HU	IE	IT	LT	LV	NL	PL	PT	RO	SE	SI	SK	UK	0	J

Outlook: Nuclear and coal phase outs might reduce the firm capacity level

Even with gas-fired power plants supplying heat pumps, emissions savings of up to 15% of total national emissions are possible.

																											- 1	5
EL20_2015 -	-1.3	-2.6	-0.65	-1.4	-1.7	-0.8	-0.53	-1.3	-1.3	-1.6	-2.6	-1.6	-2.1	-2.6	-1.9	-0.93	-1.7	-1.1	-1.3	-1.7	-0.62	-1.1	-2.3	-1.3	-1.4	-2.2		
EL40_2015 -	-2.6	-5.1	-1.3	-2.8	-3.3	-1.5	-1.1	-2.7	-2.7	-3.1	-5.2	-3.1	-4.2	-5.3	-3.8	-1.9	-3.4	-2.2	-2.6	-3.5	-1.3	-2.2	-4.6	-2.3	-2.9	-4.5	- 1	0
EL60_2015 -	-3.9	-7.7	-2	-4.1	-5	-2.3	-1.6	-4	-4	-4.7	-7.8	-4.5	-6.3	-7.9	-5.6	-2.6	-4.8	-3.7	-4	-5.2	-1.9	-3.2	-7	-3.6	-4.3	-6.7	- 5	5
EL80_2015 -	-5.2	-10	-2.6	-5.5	-6.7	-3.1	-2.1	-5.3	-5.4	-6.1	-10	-6.1	-8.3	-11	-7.5	-3.5	-6.5	-4.8	-5.3	-7	-2.6	-4.3	-9.3	-4.9	-5.9	-9	-()
EL100_2015	-6.5	-13	-3.4	-6.9	-8.3	-3.8	-2.6	-6.6	-6.7	-7.7	-13	-7.7	-10	-13	-9.4	-4.4	-8.2	-6.3	-6.6	-8.7	-3.2	-5.4	-12	-6	-7.3	-11		-5
EL100BIO_2015 -	-3.6	-12	-1.9	-5.2	-7.3	-0.96	0.14	-5.7	-6	-3.6	-11	-1.5	-6.7	-13	-7.8	0.01	-8	2.5	-6.4	-7.8	-2	-1.8	-9	-2.2	-7.3	-11		-10
EL100ALL_2015 -	-3.5	-12	-4.6	-12	-8.2	-4.3	-0.42	-5.9	-5.8	-4.2	-12	-3	-9	-13	-8.4	1.5	-9	1.6	-6.9	-15	-1.8	-5.4	-2.7	-6.7	-11	-11		
	AT	BE	BG	CZ	DE	DK	EE	EL	ES	FI	FR	HR	HU	IE	п	LT	LU	LV	NL	PL	PT	RO	SE	SI	SK	UK		15

The greener the electricity, the larger the carbon payback.

- → The impact of the emission factor becomes more important with higher electrification shares.
- → On an EU level, up to 16% of total emissions could be avoided by a complete electrification through heat pumps, if supplied by green electricity.
- → Costs of electricity provision could be comparable to the base case, as LCOE of wind power is at a similar level of the marginal cost of a combined-cycle gas turbine. This changes if curtailment increases substantially.

How much heat pump capacity can we deploy taking into consideration todays capacities?

- Present power system is ready to accomodate 1.1 TW of heat pump capacity.
- \rightarrow This number increases up to 1.6 TW, if they are being operated in a flexible way.
- \rightarrow Emissions would be reduced by 116 169 MtCO2 anually
- \rightarrow Corresponding to roughly 3.4 4.9% of the EUs total emissions

	In	flexible deman	d	D	emand respons	e
	Currently feasible scenario	Capacity [GWth]	Differential emissions [MtCO2]	Currently feasible scenario	Capacity [GWth]	Differential emissions [MtCO2]
AT	None	0	0	None	0	0
BE	None	0	0	None	0	0
BG	EL100ALL	36	-4.9	EL100ALL	36	-4.9
CZ	EL100	53.7	-6.2	EL100BIO	70.4	-7.5
DE	EL20	121.7	-11.1	EL40	243.1	-22.2
DK	EL100BIO	20.6	-2	EL100BIO	20.6	-2
EE	EL100	4.6	-0.6	EL100BIO	9	-0.8
EL	EL100ALL	78.8	-5.1	EL100ALL	78.8	-5.1
ES	EL100ALL	193.5	-19.7	EL100ALL	193.5	-19.7
FI	None	0	0	None	0	0
FR	EL20	68.1	-10	EL80	272.3	-40.1
HR	EL100	14.8	-1.4	EL100	14.8	-1.4
HU	None	0	0	None	0	0
IE	EL100ALL	20.6	-3.5	EL100ALL	20.6	-3.5
IT	EL60	202.3	-21.1	EL80	269.7	-28.2
LT	EL100	4.7	-0.4	EL100	4.7	-0.4
LU	EL100ALL	7.4	-1	EL100ALL	7.4	-1
LV	None	0	0	None	0	0
NL	EL80	89.6	-9.8	EL100	111.9	-12.3
PL	EL40	66.7	-5.5	EL40	66.7	-5.5
PT	EL100ALL	30.7	-3	EL100ALL	30.7	-3
RO	EL100	47.5	-4.1	EL100	47.5	-4.1
SE	EL100BIO	42.8	-5.4	EL100BIO	42.8	-5.4
SI	None	0	0	EL60	4.2	-0.5
SK	EL40	9.3	-1	EL60	14	-1.5
UK	None	0	0	None	0	0
EU27 + UK		1113.3	-115.9		1558.6	-169

Key take aways

Agora Energiewende

Anna-Louisa-Karsch-Str.2 10178 Berlin **T** +49 (0)30 700 1435 - 000 **F** +49 (0)30 700 1435 - 129

www.agora-energiewende.de

Abonnieren sie unseren Newsletter unter www.agora-energiewende.de

www.twitter.com/AgoraEW

Thank you for your attention!

georg.thomassen@agora-energiewende.de

Agora Energiewende ist eine gemeinsame Initiative der Stiftung Mercator und der European Climate Foundation.