

16 December 2020

Smart charging puts the pedal to the metal on e-Mobility: Introductory remarks

Electrification Academy webinar

Michael Hogan Senior Advisor The Regulatory Assistance Project (RAP)® Rue de la Science 23 B-1040 Brussels Belgium mhogan@raponline.org raponline.org

Why is it important? (Wholesale)

Why is it important? (Retail)

For source data, see RAP's Jan 2018 *Treasure Hiding in Plain Sight: Launching Electric Transport with the Grid We Already Have* (Hogan, M., Kolokathis, C., Jahn, A.) pg 4

Can we do it? Will we do it?

Can we do it? Will we do it?

Source: Octopus Energy. (2018). Agile Octopus: A consumer-led shift to a low carbon future.

About RAP

The Regulatory Assistance Project (RAP)[®] is an independent, nonpartisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Michael Hogan Senior Advisor The Regulatory Assistance Project (RAP)® Rue de la Science 23 B-1040 Brussels Belgium mhogan@raponline.org raponline.org

SMART CHARGING GUIDE

Elaadnl

Founded and funded by Dutch DSOs, ElaadNL is a non-profit Knowledge & Innovation Centre in the field of smart charging infrastructure

Drs Frank H.G.A. Geerts MMA

ElaadNL Program director Smart Charging Chairman National WG Smart Charging Energy industry > 20 years e-Mobility > 10 years

Leonardo ENERGY

Smart Charging Guide

How can we charge millions of EVs with power generated by the sun and the wind whilst ensuring that the power network remains reliable and affordable?

What is Smart Charging?Why is it necessary?What variants are there?Which parties play a role?How does it work in the practice?What do we still have to do to make Smart Charging happen?

Feedback welcome: frank.geerts@elaad.nl

The Challenge of 100% EV

1. Is there enough <u>energy</u>?

2. Is there enough renewable energy?

3. Can we generate enough power to charge simultaneously?

4. Can we transport enough power to charge simultaneously?

Netherlands Road Mobility

Road vehicle	Number	Km range year	Yearly Average	Energy (TWh)	Power (GW)
Netherlands Electric	ity numbers (202	0)		120	30
Passenger cars	8,500,000	121 billion	13,000	24,2	90
Vans	900,000	18 billion	20,000	3,6	10
Trucks	140,000	10 billion	70,000	1,2	tbd
Buses	10,000	0,7 billion	70,000	0,1	tbd

► >50k

🔊 <50k

🖦 🦚 <40k

⇔ ⇔ ⇔ <30k ⇔ ⇔ ⇔ ⇔ <25k

SZUK

~~~~~~~~~~~~~

It's not common knowledge, but on average, a car drives no more than 35km a day.

In fact, very few exceed 100kms.

Many more only drive less than 15 km a day!

The challenge is

POWER

and not

ENERGY

Riding waves of Renewable Power (kW)

Can you calculate a Business Case with billions of investment for wind and solar installations based on business window of 2 hours a day?

Reinforce the Power Grid

(kW)

Roll-out velocity Need for Public space Technical engineers Investment

	Local stand-alone	Central to the cloud
Car	Battery management system	Connected car
Charging station	Controller	Back office systeem
Power grid	Smart meter & local smart	Grid management system
	grid	operators
Related energy	Home energy management	Online energy management
systems	system & Building energy	platforms
	management system	

Intelligence

Driver	Parking time (departure time - arrival time)
	Desired kWh (minimum and optional)
	Price preferences price
	Energy mix - solar / wind
	Choice of Electric Mobility Service Provider
Car	Supported charging speeds
	Battery size (kWh)
	How full is the battery? (state of charge)
Charging station (location)	Number of charging points
	Supported charging speeds
Local electricity grid	Contracted maximum capacity grid connection
Related local energy	Presence of solar panels, static battery, home, office

Consumption or generation of related energy systems

https://www.youtube.com /watch?v=gpcsGS42KPE

Time and power and direction

	Ampere's per phase (A)	3 phase power (kW)	Km per hour charged
EN			
Standard	12	8,3	40
Accelerated	16 - 32	11 - 22	55 tot 110
Delayed	>6 en <12	4,1 - 8,2	20 tot 40
Paused	0	0	0
V2G	>6 en <16	4,1 - 11	-20 tot -55

Data

Control signal individual charge session

Control signal group of charge sessions

•

morning peak

Peak clipping

evening peak

- Valley filling: more or faster charging at periods of low energy demand.
- Stimulation: faster charging when more sustainable (or cheap) electricity is available.
- Load shifting: slower charging at times when peak loads are imminent; EVs then charge faster at other times.

morning peak

evening peak

evening peak

12G

- Energy conservation: at the time of charging, the speed is reduced to less than the technical . maximum for the entire charging period.
- Peak clipping /peak shaving: less rapid charging at times when there is a risk of peak loads. .
- Power production: resupply of energy from the EV. .

Open standards and protocols

https://www.youtube.com/watch?v=H74ZPV gdmk

Ξ

2

CHARGER-CENTRIC

CAR-CENTRIC

HOME-CENTRIC

https://www.youtube.com/watch?v=M2IMS5GysNg

SMART CHARGING

CYBER

SECURITY

OPEN ENCLOSURE

UPDATING FIRMWARE..

Smart Charging Requirements

National Agenda Charging infrastructure

Smart Charging concerns

National Agenda Charging infrastructure

- 1. The New Consumer Agenda with a vision for EU consumer policy from 2020 2025
- 2. REGULATION (EU) 2019/943 on the internal market for electricity
- 3. DIRECTIVE (EU) 2019/944 on common rules for the internal market for electricity
- 4. Revision of the Batteries Directive (2006/66/EC), include open access to battery data for properly functioning smart charging

https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:3201 9R0943

https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:320 19L0944

https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:520 20DC0696 93

Smart Charging Model provides a helicopter view of complementary elements

- 1. Smart Charging Technology Ready
 - Electric vehicles
 - Charging infrastructure
 - Data access, protocols and cyber security
- 2. Power System Ready
 - Flexible prices electricity supply
 - Flexible tariffs for Power Grid access
 - Security of Supply safeguard signals
- 3. Commercial scale-up to exceed drivers' expectations
 - Electric Vehicles
 - Charging infrastructure
 - (Smart) Charging services

https://www.elaad.nl/uploads/files/Smart Charging Guide EN single page.pdf

SMART CHARGING GUIDE

Frank Geerts frank.geerts@elaad.nl

