Users TCP Academy

"How are energy communities/districts contributing to energy transition?"

UNIVERSITÉ

DE GENÈVE

Dr. Selin Yilmaz

Energy Efficiency Department Institute of Environmental Sciences University of Geneva

15 June 2022

Agenda

Technological and social innovation in different community energy typologies and their relationships with the socio-technical regimes
Policy implications and recommendations for programme managers
Moving towards Living Labs as a methodology and as intermediary

Changes in the landscape

Geographic dimension

- Transition to low-carbon supply
- Distributed energy resources
- Decentralisation
- Electrification of mobility & heating
- Intelligent and digital systems

Energy communities and districts

Energy communities and districts

EU: Clean Energy for all European Packages, 2016 (Electricity Directive, Art. 2, No.11)

"renewable energy communities" "citizens energy communities"

Switzerland: Swiss provisions (the Energy Law (Lene), 2016 and Energy Ordinance (OEne), 2017) "groupings of prosumers and consumers", "community ownership", "community energy"

PEDs (positive energy districts) Smart Cities So on and so on.

Learnings from case studies in Switzerland

Case studies

Case study 1 Self-consumption community (2 multi-family buildings in Boiron) Case study 2 Self-consumption district (4 multi-family buildings in Möriken-Wildegg) Case study 3 Integrated energy community (17 detached houses and school in Luggagia)

Case study 4 Virtual Power Plant (A pool in Zurich for 15 buildings)

Case study 5 Peer to peer trading community (Quartierstrom, 37 househods)

Case study 1: Self-sufficient community

30 apartments PV capacity 71.4 kW.

If PV consumed: 17 ct/kWh If bought from the grid: 21 ct/kWh Sell PV excess: 10 ct/kWh

No energy management systems

Case study 1: Self-sufficient community

5% decrease in the bills 4,500 CHF per year \rightarrow 20 years

Case study 2: Self-sufficient innovative district in Möriken-Wildegg with EMS

Möriken-Wildegg with 4 apartment buildings (source: Setz Architektur AG)

Case study 2: Self-sufficient innovative district in Möriken-Wildegg with EMS

- The optimization tool prioritizes PV production first, if there is no production, the optimization is done based on real-time prices.
- 50% of people have moved their washing machines and dishwashers.
- Average self-consumption was 46% and self-sufficiency 52%.
- 7.8% bill savings for end users.

- Community interest first!
- Constant support with information (interface)

Case study 3: Luggagia Innovation Community

Problem & Motivation:

Too much PV supply (grid problem) Local congestion (EV & heat pump) Network reinforcement + voltage

Source: Supsi

14 house (75 residents), 3 house prosumers (33 kWp)

One kindergarten (30 kWp)

EMS (Heating + A decentralised battery) Municipality

owner

Local utility DSO

co-invested & co-owner

Case study 3: Luggagia Innovation Community

DSO sells to the community: 21 cts/kWh

Case study 3: Luggagia Innovation Community

- 89% of the additional photovoltaic energy that was fed into the grid before was used in the community.
- Increased local self-sufficiency by 16%.
- 5% peak decrease only with domestic hot water. heat pumps \rightarrow peak shaving of at least 15%
- Techno-economic analysis: 15-18% cost reduction for the DSO.

- Community interest first!
- Clear and transparent communication with people (workshops, surveys)

- Technological innovation: know-how on PV technologies, energy management of distributed resources in communities and districts.
- Social innovation: Developing new practices is not observed strongly after joining.
- Constant support is needed by developers.
- Collaborative & symbiotic niche innovation
- DSOs, retailers closely working with SMEs, technology companies for more granular management of communities.

LANTERN (Living IAbs iNTerfaces for the Energy tRansitioN)

W.

J.

UsersTCP

LANTERN (Living IAbs iNTerfaces for the Energy tRansitioN

UsersTCF

Thank you very much! Merci beaucoup!

Selin.Yilmaz@unige.ch

userstcp.org

s.thomas@userstcp.org

User-Centred **Energy Systems**

About Us

The User-Centred Energy Systems mission is to provide evidence from socio-technical research on the design, social acceptance and usability of clean energy technologies to inform policy making for clean, efficient and secure energy transitions.

Webinars

Annexes

A.175

Hard-to-10 **Reach Energy** Users

Peer-to-Peer Energy Trading

Behavioural

Social License to Automate UsersTCP

